Windsurfing with APPA: Automating
Computational Fluid Dynamics Simulations
of Wind Flow using Cloud Computing

1** Anshul Jindal*, 2™ Benedikt Strahmf, 3™ Vladimir Podolskiy*, 4 Michael Gerndt*
Chair of Computer Architecture and Parallel Systems, Technical University of Munich*
Independent Researchert
Garching (near Munich), Germany
anshul.jindal @tum.de, benedikt.strahm @outlook.com, v.podolskiy @tum.de, gerndt@in.tum.de

Abstract—Computational fluid dynamics (CFD) can serve as
a complementary approach to conventional wind tunnel testing
to assess the wind flow around tall buildings. Being a clear
High Performance Computing (HPC) task, CFD simulations
conventionally run on supercomputers and compute clusters
using specialized software such as OpenFOAM. The limited
availability and high maintenance costs of supercomputers and
clusters force small and medium companies to search for the
cost-efficient infrastructure to conduct their simulations with
the appropriate performance. The on-demand offer of compute
capacity by cloud service providers are well suited this task.
However, engineers and researchers require extensive expertise
and experience in working with cloud computing in order to
benefit from running CFD simulations on a cloud.

The contribution of the paper to the outlined problem is
two-fold: 1) a unique Automated Parallel Processing Application
(APPA) tool that hides the cloud management details from the
wind engineer and provides an intuitive user interface; 2) the
estimation of the optimal number of cores (vCPUs) for virtual
machine instances provided by AWS and Google Cloud based on
average run time and total cost metrics for a given number of cells
of a CFD-simulation. n1-highcpu-96 Google Cloud VM met both
goals: low cost and low runtime per timestep. For the number
of vCPUs below 16, the c4.8xlarge AWS VM type has the least
runtime per timestep in all the cases. Google Cloud instances
with high vCPUs are recommended to run the simulations if
budget is a big concern.

Index Terms—cloud computing, wind flow simulation, com-
putational fluid dynamics, domain-specific performance analysis,
OpenFOAM, Google Cloud, AWS, containers, Docker

I. INTRODUCTION

Wind engineering is a discipline that, amongst other, in-
vestigates the impact of wind flow on buildings in different
environments. The importance of this discipline arises from
wind loading on buildings being a potential cause of structural
damage and collapse. An example would be the collapse of the
Tacoma Narrows Bridge near Seattle in November 1940 due
to wind-induced vibrations [1]. Since then, wind tunnel-based
physical testing was established as the standard to evaluate the
impact of wind on slender and/or long-span structures such as
bridges and skyscrapers.

CFD uses numerical analysis to solve problems of fluid
flows and allows to conduct simulations of turbulent wind flow

around structures. These numerical methods are nowadays
increasingly finding their way into the discipline of wind
engineering on buildings and already play an important role
in sectors such as the automotive or aircraft industry. How-
ever, such simulations require large amount of computational
resources that can be provided by supercomputers and high
performance compute clusters [2]. The high cost of acquiring
and maintaining the required computing infrastructure, com-
bined with a fluctuating demand for compute resources, may
constrain small and medium enterprises (SME) in using CFD-
simulations. Although it is possible to temporarily rent the
compute resources from HPC centers and even to adapt them
to the changing resource demand of the task at hand [3],
the high amount of concurrent users, high costs and loose
guarantees on fault tolerance make these solutions mostly
unfeasible for practical use.

Cloud provides on-demand compute resources in the form
of virtual machines (VMs) of different types, which vary
in the amount of resources including the memory and the
virtual CPUs (vCPUs) and in the price per unit of time.
The on-demand provisioning of the compute resources in the
cloud allows to make the infrequent data processing cost-
efficient by undeploying the VMs as soon as they are not
required. Along with the high guaranteed availability, this cost-
efficiency makes cloud a good choice for conducting CFD
simulations [4]. Albeit cloud services providers support some
CFD solutions like OpenFOAM out-of-the-box by offering the
corresponding VM images through their marketplace', still
the following two challenges remain both for the individual
wind engineers and for the SMEs that cannot afford having a
full-time cloud computing expert: 1) general-purpose interface
of cloud services providers console that is not customized to
the level of skills of engineering workers; 2) unclear relation
between the accuracy of the simulation, the time required to
get the solution and the cost of the cloud resources used for
the simulation.

The paper contributes to solving the outlined challenges in

LAWS, ”CFD Direct From the
aws.amazon.com/marketplace/pp/BO17AHYO16/

Cloud™:

the following ways: 1) by introducing the Automated Parallel
Processing Application (APPA) tool developed to make the
setting and the execution of CFD simulations on AWS Cloud
and Google Cloud intuitive via the though-through user inter-
face; 2) by estimating the optimal number of virtual CPUs for
VMs of AWS Cloud and Google Cloud based on the execution
time and the total cost as determined for various configurations
of the CFD simulations.

The rest of the paper is organized as follows. Section
2 provides the background knowledge in CFD and cloud
services. Section 3 discusses the related works. Section 4
examines the architecture and implementation details of the
developed APPA tool. Section 5 provides the experimental
configuration used to determine the optimal number of cores.
Section 6 presents the results of running the tests and discusses
the selection of cloud services provider for conducting CFD
simulations. Section 7 concludes the work and sketches future
work directions.

II. BACKGROUND

A. Computational fluid dynamics in wind engineering on tall
buildings

CFD is a branch of fluid mechanics. It deals with numerical
solutions of various fluid problems. The flow of air around
tall buildings in the context of wind engineering and fluid
mechanics is classified as an unsteady, turbulent Newtonian
fluid nearly always in subsonic range.

Therefore, the appropriate mathematical model to describe
the wind flow is the incompressible Navier-Stokes equa-
tion (1):

ou; Ou; 10
u u; p+F+

ot i or; poxy " p Ox;0x,

To perform numerical simulations for buildings, a so called

virtual wind tunnel is used. It is a three-dimensional space

that encloses the geometry of the building. The wind tunnel

and the building are discretized in space into a computational

cells as shown in Fig. 1. For each of these cells, numerical
approximations of equation (1) are iteratively computed.

po 0%u;

0]

Fig. 1: Virtual wind tunnel discretized in computational cells

Since the problem is time-dependent, the geometrically
discretized equations must also be discretized in time and
solved at each time step.

The process of converting the flow problem from a physical
statement into an approximated solution is summarized in
Fig. 2.

Main difficulties in the solution of the Navier-Stokes equa-
tions arise from the turbulence of the flow. In order to correctly
solve the flow problem, all turbulence scales have to be
considered, leading to a practically unfeasible high computa-
tional effort [6]. Therefore typically Large Eddy Simulations
(LES) are used, where small scales are not resolved and the
effects of turbulence are predicted. This significantly reduces
computational costs, but is less accurate than resolving all
scales. Nevertheless, the solution of turbulent flow problems
remains computationally expensive. This results from the large
number of cells to be solved, which is amplified by the fact
that typically a sufficiently large time period with fine time
stepping is required.

For CFD-simulations there exists a wide range of commer-
cial and open source software, each designed for specific flow
problems. In the open source area, OpenFOAM, which has
been applied in this research, is one of the most common
software packages [7].

B. Cloud Service Providers

This subsection presents the Cloud Service Providers (CSP)
whose compute resources were used in the scope of the
research.

1) Amazon Web Services (AWS): AWS? is a cloud com-
puting platform offered by Amazon to provide on-demand
compute and storage resources. AWS provides Amazon Elastic
Compute Cloud (Amazon EC2), a web service that offers
scalable and re-sizable compute resources and allows users
to launch different types of VMs varying by the amount of
resources. Some EC2 instance types are optimized for specific
use cases, €.g. compute-intensive or memory-intensive. The
other AWS service which is used by APPA is Amazon Simple
Storage Service (Amazon S3). Amazon S33 is an an object
storage service allowing to store and retrieve any amount of
data through a simple web interface. To store an object on
S3, one needs to create a bucket which acts as a collection of
objects [8].

2) Google Cloud Platform (GCP): The Google Cloud
Platform* is a suit of cloud computing services offered by
Google. As part of this suite, they offer Google Compute
Engine (GCE), an Infrastructure-as-a-Service (IaaS) used to
launch virtual machines of different types on-demand [9].
Apart from it, APPA also uses Google Cloud Storage to
store the metadata and simulation results [10]. Google Cloud
Storage is a RESTful web service to store and access the files
through GCP infrastructure. It is also an IaaS service similar
to the Amazon S3. The combination of GCE with Google
Cloud Storage offers a Google-specific way to realize the CFD
simulations on the cloud.

Zhttps://aws.amazon.com/what-is-aws/
3https://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html
“https://cloud.google.com/gcp/

Idealization Discretization

7N 7 N

Approximation Solution

7N 7 N

Mathematical
Model

Physical
System

Discrete
Model

Numerical
Approximation

Computed
Solution

Fig. 2: Analysis process of CFD-simulations [5]

C. Containerization

Containerization is an OS-level virtualization method that
allows to create containers which share the operating system
of the underlying host [11]. Containers became a major trend
in software development as an alternative to the traditional
VMs. Containers wrap the application code along with its
dependencies, so that it can be executed robustly on any
infrastructure.

Docker is an open source containerization technology de-
veloped by Docker Inc which allows to execute application
in an enclosed runtime environment without virtualizing the
OS [12]. Docker containers became the de facto industry
standard for containerizing the applications [13]. Docker uses
images (similar to the virtual machine images) as a base for
the containers. These images contain all the libraries as well as
the OS kernel required for running the application. Containers
are instantiated from such images similarly to VMs in order
to run the application. Docker containers require the Docker
software and enough resources for running them on a host. As
part of this work, OpenFOAM docker image was used as the
base image for building the application container [14].

III. RELATED WORK

Slawinski, et al. [15] in their research ported two production
CFD based simulations on four different platforms (one of
which was Amazon EC2) and claimed that the Cloud laaS re-
sources can be utilized for scientific CFD simulations possibly
at lower cost than those incurred locally. However, they did
the deployments of the simulations on the VMs manually due
to cumbersome nature of the requirements and it took them
up to a day for the deployment only. Ledyayev and Richter
[16] benchmarked OpenFOAM on OpenStack platform and
found out that OpenStack platform might not be well-suited for
running OpenFOAM based simulations due to the performance
degradation with respect to a reference computer of the same
capabilities outside of OpenStack. However, they also claimed
that with certain measures like changing the hardware and
running multiple tests one can improve the performance.

OLeary, et al. developed a web-based simulation environ-
ment called as HPCCloud. The environment allows to create
or define a simulation using the given input decks and then it
submits to a cluster in the Cloud for processing. Their work
lets the user create simulation through the web interface using

the given input decks, however in our work, we have left the
simulation creation to the domain expert and other stuff like
deployment, running of simulation, monitoring etc. are off-
loaded from the user to the developed system. This allows the
user to only focus on the application logic part.

IV. AUTOMATED WIND FLOW SIMULATIONS
IN CLOUD WITH APPA

A. Architecture and functionality

Automated Parallel Processing Application (APPA) tool was
developed in the scope of the paper to automate the wind flow
simulations on the cloud. Its implementation is in Golang and
Python and consists of two major components — User Interface
and Application Deployer. The high-level architecture of the
tool and the communication paths between its components
are shown in Fig. 3. Containerized APPA components can
be individually scaled depending on the load. The tool partly
automates the workflow of a CFD simulation, starting with the
initialization of application requirements and ending with the
collection of the final simulation results.

data saved

Application
Deployment
>
g 93 Application Deployer
o
< 08 AWS Cloud Interface - -
3 g Cloud Service Provider
o
> c Google Cloud Interface e
g g
= = J A T BT e]
® $F 2 1 ' Virtual Machine !
3 @2 3 : ' — ; i
z |58 = : ! Application Container
Sigz 3 ! i i
§' S ~ ! ! Monitoring Agent '

> I e

h) Tt Mongo Influx i

% saved LB ol E

%:}' i Resources Monitoring

o |

Output

s3|qel
pue uopezijensin

Fig. 3: Overall architecture of the APPA tool.

The automated simulation process starts with the user
providing the OpenFOAM-based application source path along
with the configuration parameters both for the application and
for the deployment settings through the web interface or APIs.

Following, to prevent the user the hassle of preparing docker
images the application is packaged into a Docker container
and is deployed along with the monitoring agent in a VM
of the supported cloud service provider (AWS or Google
Cloud). The application metadata should be uploaded in the
defined storage bucket of the selected cloud service provider
beforehand using the option provided in the user interface
and is automatically downloaded by the application container
during its initialization process for further use.

On the completion of the preparatory steps, the simulation
process starts. During the simulation, APPA continuously
monitors the remaining simulation time by comparing the
number of timesteps completed (stored inside the log files)
to the total number of timesteps required for the simulation to
be completed. Once the simulation is completed, the results
are pushed to a new cloud storage bucket and the VM is ter-
minated. The table representation of the test data information:
the number of cells, VM type used, test case name, number of
time steps completed, link to download the simulation results,
start and stop time of the simulation, and link to the real-time
resources usage monitoring is presented to the user. The user
also has the option to download the simulation results. Fig. 4
shows the flowchart of the procedure of running simulations
using APPA.

OpenFOAM simulation source code of
the building

|

Configuration of simulation
parameters

Running of simulations on the
Cloud
Cwr | [wer | Cwer | [e |

Simulation results storage

\ |
]

Analysis, visualization and
download

Monitoring data storage

Fig. 4: Flowchart of the procedure of running simulations
using APPA.

In further subsections, we describe each component of the
APPA.

B. User Interface

APPA encompasses the web user interface (UI) which al-
lows the user to easily interact with the tool and conduct wind
flow simulations using the dashboard shown in Fig. 5. Fig. 5a
shows the dashboard enabling the user to configure simulation
and deployment parameters. Also, the following parameters
can be configured from this dashboard: application source,
application configuration, and deployment configuration.

Application Source takes the OpenFOAM-based applica-
tion source link as the input. Currently, the source link can
only be provided as the GitHub link.

Application Configuration is responsible for setting the
following configuration parameters of the application:

o Maximum Time Steps is the upper bound on the number
of simulation time steps.

o Number of Cells is the number of computational cells
of the simulated geometry.

o Test case name is the name of the test case to run from
the application source; only required if the application
source consists of multiple test cases.

Deployment Configuration is responsible for setting the
following deployment configuration parameters:

¢ Cloud Service Provider (CSP) is the IaaS CSP on which
the application is to be deployed and tested. Currently,
AWS and Google Cloud are supported.

e VM Type is a type of virtual machine instance to be used
for running the simulations, e.g. example nl-highcpu-32
of Google Compute Engine’ and c4.8xlarge of AWS ©.

e Cloud Bucket Name is the name of the bucket where
the metadata of the application resides.

Ongoing and completed simulations are presented to the
user in the form of a table as shown in the Fig. 5b. This table
contains the test information: the number of cells, VM type
used, test case name, number of time steps completed, link
to download the simulation results, start and stop time of the
simulation, and the link to the Grafana dashboard to monitor
in the real-time the resources utilization for each test.

C. Application Deployer

Application Deployer is responsible for the deployment of
the application on the chosen cloud service provider. Each
provider offers an API to interact with its services. The
application deployment starts by sending a REST API call to
start a VM using the configuration parameters enclosed with
the call. The application initialization steps: the creation of
the application container, acquisition of the metadata from the
bucket followed by the start of the simulation, are added as
part of the VM instance boot script. When the simulation com-
mences, the configuration parameters and the simulation start
time are inserted into the MongoDB. Also, the current number
of timesteps completed for the simulation is periodically up-
dated in the MongoDB. Once the simulation is completed, the
simulation results are stored in the cloud storage bucket and
a VM termination request is sent to the cloud automatically.
Lastly, the test termination time is updated in the MongoDB.

The adopted application deployment process allows starting
multiple parallel simulations, thus reducing the time to get the
simulation results.

A monitoring agent is deployed along with the applica-
tion which continuously monitors the resources consumption
(CPU, Memory, I/0, and network) of the container as well as

SGCE machine types: cloud.google.com/compute/docs/machine-types
6 Amazon EC2 Instances: aws.amazon.com/de/ec2/pricing/on-demand/

Choose Cloud Service Provider ‘ ‘ Input Configuration Parameters

Conduct Test

AppGitPath Num Cells name of test Case

Specify AP Git path| Specify number of cells

MaxTimeSteps Boundary Data Bucket
Name.

& Start Test

3600
boundarydata

(a) Dashboard for configuring and starting the simulation.

Download
Simulation
results

Current Status of
Simulation (number of
timesteps completed)

Monitor VM in real
time

Type of
Instance

On-gojng/Completed Tests

Show| 10] ¢ entries Search:

* InstanceTy,

H

FileName Test case c$p Region Currentstatus ' Phase

© n-highcpu-96 appatpoxemvexBtargz BABFO00.4OD AN GCE us-centrall-a 3592 ompleted

Thu Feb 07 2019
22:34:27 GMT+0100

Fri Feb 16 2019 06:41:52
GMT+0100 (C

|
European Standard Time)

© n-highcpu-96 appaiduehgBaditargz BABFO2040DAMM GCE us-centrall-a 3592 Completed

FriFeb 082019 00:2618 Fri Feb 15 2019 06:42:18
GMT+0100 (Central

© n-highcpu-96 appa BABFO03040DAMM GCE 2 3592 Completed

pu-96 BABFO04040DAMM GCE 2 3502 Completed

wScBwiargz B_ABF05040DANM GCE 2 3502 Completed

FileName Test_case csP Region CurrentStatus Phase

Showing 1to 5 of § entries Previous | 1| Next

(b) Dashboard for viewing ongoing or completed simulations.

Fig. 5: Web user interface different views.

of the VM. This data is continuously pushed to the InfluxDB
for real-time visualization and further analysis.

V. EXPERIMENTAL CONFIGURATION

Experiments on AWS were conducted using the c4.8xlarge
instance type that is optimized for compute-intensive work-
loads; this instance type has 36 vCPUs, 60 GiB of memory
and attached storage of 150GB. Experiments on Google Cloud
were conducted using nl-highcpu-32, nl-highcpu-64, and nl-
highcpu-96 instance types with 32, 64, and 96 vCPUs respec-
tively, and 28.8 GB, 57.6 GB, 86.4GB of memory respectively.
Google Cloud instances were also equipped with 150GB of
storage. All the machines ran OS Ubuntu-18.04-LTS-bionic
with Docker version 18.03 CE and Docker-Compose ver-
sion 1.23.1 installed. OpenFOAM Docker image version
v1812 was used as the base image for creating the container
of the application?.

The simulated building is the Commonwealth Advi-
sory Aeronautical Council (CAARC) standard tall building
model [17], commonly used for benchmarking in wind en-
gineering. The building geometry consists of a prismatic
shape with a rectangular cross-section. The building and a
surrounding wind tunnel form the computational domain as
shown in Fig. 6.

The domain itself was decomposed into four zones with
gradually refined grid sizes. Points that are far from the
building do not require a fine grid as the smaller vertices there
have limited influence on the building.

Further, two different grid resolutions, both with hexahedral
cells, were created in order to demonstrate the influence of
mesh refinement on the run time. The investigation of the
physical meaningfulness of these simulations is not the subject
of this study, but was examined in a preceding study, see [18].

This configuration results in the total number of 554,542
cells for Mesh A over 1,476,020 cells for Mesh B.

7https://github.com/ansjin/docker-node-monitoring
8hub.docker.com/r/openfoamplus/of_v1812_centos73

Zone 4 (coarse)
Zone 1 (fine)
CAARC building

Fig. 6: Layout of the mesh refinement zones, H = Building
height = 180m

The number of time steps T's was equal to 6,250 for each
simulation, as this led to sufficient convergence to be able to
draw reliable conclusions about the runtime [18].

VI. EXPERIMENTAL RESULTS AND DISCUSSION

The evaluation was conducted to assess the execution time
and the cost-efficiency of CFD simulations on the cloud with
APPA tool.

The reduction of the simulation’s execution time requires
the optimal use of the computing capacity of the individual
vCPUs. If the computing load exceeds the capacity of a
VM, the parallelization can further reduce the execution time.
Though, the increase in the number of cores used can result
in higher inter-process communication overheads.

The computing load per core is proportional to the number
of cells per core. The optimal number of cells per core
depends on the hardware as well as on the granularity of
the computational grid. Several simulations with the same
configuration and a different number of cores were performed
for the two meshes (Mesh A and Mesh B) on different CSPs
using different VM types to determine how many cells per
core yield a simulation optimal from the point of view of the
execution time and from the point of view of the cost. The

3.50

3.00

1.80
1.44
117
0.50 i
0.00

15403.9 17329.4
36.00 32.00

N
@
S

N
o
1S}

1.651.69

252065 34658.9
22.00 16.00
Number of cells per core and
Number of cores

-
@
S

Average Runtime per Timestep [s]

-
o
1S}

3.01
213
1.99
1.88
1.70
151 I

46211.8 55454.2
12.00 10.00

mAWS c4.8xlarge mGCP nl-highcpu-32 m GCP nl-highcpu-64

(a) Optimal number of cores based on average runtime per timestep.

300.00

264.90
250.00
200.00
171.03
150.00

170.2
155.05 |
0.00

100.00
15403.94 17329 44
36

97.59 88.02 111.22

Totoal Costin US Dollars

134.1.
100.2¢
88.90
i 8iSI I i I8i5 | 55I78 79
25206 45 34658 88 46211 83 55454 20

Number of cells per core and
Number of cores

mAWS c4.8xlarge mGCP nl-highcpu-32 m GCP nl-highcpu-64

(b) Optimal number of cores based on the total cost.

Fig. 7: Performance analysis for Mesh A with different objectives.

3.00 2.89
2.66 2.68 2.69
2.55

=250
oy
#
H
E
£ 2.00
3
3
o
£
‘g 150
°
&
g
2
2100

0.50

0.00

15,375 24,600 35,143 43,412 52,715
% 60 2 34 28

Number of cells per core and
Number of cores

m GCP ni-highcpu-96

(a) Optimal number of cores based on average runtime per timestep.

1000
942.46

900
800
700
600
500
400
300
200
100

0

15 375

594.07

24 600

395.36

35 143

Total Costin US Dollars

337.6

43 412

298.48

52 715

Number of cells per core and
Number of cores

m GCP ni-highcpu-96

(b) Optimal number of cores based on total cost.

Fig. 8: Performance analysis for Mesh B with different objectives.

resulting graphs for both metrics are shown in Fig. 7 and 8.
The missing value for 32 cores of nl-highcpu-64 instance type
in the Fig. 7 is due to running out of budget before the end
of the simulation.

Depending on the optimization objective and the accuracy
requirements to the CFD simulation, one should select dif-
ferent cloud service providers and VM configurations. Based
on the Fig. 7a one can conclude that the following VM
configurations correspond to the goal of reducing the runtime
per timestep for Mesh A simulation: 16 cores of the c4.8xlarge
AWS EC2 instance type, 36 cores of the nl-highcpu-64
GCE instance type, and 32 cores of the nl-highcpu-32 GCE
instance type. Comparing across AWS and GCE, one might
notice that 36 cores of the nl-highcpu-64 GCE instance type
result in the least runtime of 1.17 seconds per timestep. On the
other hand, if the objective is the low cost, then the optimal
number of cores for both c4.8xlarge AWS and nl-highcpu-64

GCE VM types is 10 cores, whereas 12 cores are required for
nl-highcpu-32 GCE instance type as seen in Fig. 7b. 10 cores
of the nl1-highcpu-64 GCE VM type results in the least total
cost of 78.55 USD.

Test results for mesh B (which is finer than mesh A) exhibit
the following trend in Fig. 8b: the lower the number of cores is,
the lower is the total cost. 28 cores of the n1-highcpu-96 GCE
instance type has the least cost of 298.48 USD. However, in
Fig. 8a one can see that there is not much difference between
the average runtime per timestep for different number of cores
(with maximum difference of 0.34 seconds per timestep). 42
cores of the nl-highcpu-96 GCE instance type result in the
least average runtime of 2.55 seconds per timestep.

In summary, nl-highcpu-96 GCE VM met both goals: low
cost and low runtime per timestep. Results summary for Mesh
A and Mesh B are presented in Table I and Table II respec-
tively. For the number of vCPUs below 16, the c4.8xlarge

TABLE I: Results of the performance analysis for Mesh A tested on different CSPs and different VM types.

Cores 10.00 12.00 16.00 22.00 32.00 36.00
Cells / Core 554542 | 462118 | 346589 | 252065 | 173294 | 154030
Total Runtime (in minutes) 1062030 | 9419.25 | 8201.73 | 10554.60 | 11239.00 | #N/A
AWS c4.8xlarge Total Runtime (in days) 7.38 6.54 5.76 7.33 7.80 #N/A
. Avg Runtime per Timestep (in seconds) | 1.13 1.00 0.88 1.12 1.19 #N/A
Total Cost (in US dollars) 78.79 83.25 97.70 171.03 264.9 #N/A
Total Runtime (in minutes) 18824.60 | 12415.60 | 10324.00 | 10319.00 | 9006.63 | #N/A
. Total Runtime (in days) 13.07 8.62 7.17 7.17 6.25 #N/A
GCP nl-highcpu-32 |\ 0 "p intime per TinZestep (in seconds) | 2.00 1.32 1.10 1.10 0.96 #N/A
Total Cost (in US dollars) 111.22 88.02 97.59 134.13 170.28 #N/A
Total Runtime (in minutes) 1329620 | 11755.00 | 8816.69 | 771347 | #N/A 7290.00
, Total Runtime (in days) 9.23 8.16 6.12 5.36 #N/A 5.06
GCP nl-highepu-64 | o " b ntime per Tisttep (in seconds) | 141 1.25 0.94 0.82 #N/A 0.77
Total Cost (in US dollars) 78.55 88.90 83.35 100.26 #N/A 155.05

TABLE II: Results of the performance analysis for Mesh B
tested on nl-highcpu-96 (Google Compute Platform) VM.

Cores 28 34 42 60 96
Cells / Core 52715 43412 | 35143 24600 15375
Runtime (in min) 18049 16812 | 15938 16764 16622
Runtime (in days) 12.5 11.7 11.1 11.6 11.5
Avg. Runtime per 2.89 2.69 2.55 2.68 2.66
Timestep (in sec.)

Total Cost 298.48 | 337.6 395.36 | 594.07 | 942.46
(in US dollars)

AWS VM type has the least runtime per timestep in all the
cases (lowest being 0.88 seconds for 16 cores). In contrast,
the c4.8xlarge AWS VM type resulted in the highest total
cost despite having the low runtime for vCPUs number equal
to 16. If the budget is the key concern for CFD simulations,
then GCE instances with high vCPUs are recommended to run
the simulations.

VII. CONCLUSION

It is of great interest for CFD-simulations to have access
to dynamic, high-performance and economic computing re-
sources. Cloud computing provides a valuable response to
these requirements and offers a preferable option for small
and medium-sized enterprises that do not have their own
computing resources.

The complexity of cloud computing led to a task of pro-
viding a user-friendly interface to conduct CFD-simulations
on the cloud by engineers and of selecting the appropriate
compute configuration to run experiments in accordance with
execution time and total cost reduction goals.

This study addressed the outlined challenges by introducing
the APPA tool to partially automate CFD-simulations in the
cloud for AWS and Google Cloud. The real CFD-simulation
runs had shown that the use of GCE instance types can result
both in low total cost (78.55 USD) and in low execution time
per timestep (0.77 seconds). Results of this study have also
pointed out that lowering the number of cores results in the
reduction of the total cost.

The promising directions of the future work include but
are not limited to: 1) implementing the monitoring of the
simulation time and of the resources usage to enable the
optimization of resources by applying early stopping; 2)

implementing dynamical scaling of the VM cluster used for
the CFD simulation; 3) deriving the model that relates domain-
specific parameters used for CFD-simulations to the total cost
and the execution time.

VIII. AVAILABILITY

The developed tool APPA is publicly available on GitHub
under the link github.com/Cloud-Pie/APPA.

IX. ACKNOWLEDGEMENTS

This work was supported by the funding of German Federal
Ministry of Education and Research (BMBF) in the scope of
Software Campus program and also by GCP research credits.
This work was also supported by the AWS Cloud Credits for
Research program.

REFERENCES

[1] W.-H. Hucho, Aerodynamik der stumpfen Korper: Physikalische
Grundlagen und Anwendungen in der Praxis, ser. Grundlagen und
Fortschritte der Ingenieurwissenschaften, Wiesbaden and s.l., 2002.
[Online]. Available: http://dx.doi.org/10.1007/978-3-663-07758-9

[2] S. Lawson, M. Woodgate, R. Steijl, and G. Barakos, “High
performance computing for challenging problems in computational
fluid dynamics,” Progress in Aerospace Sciences, vol. 52, pp.
19 — 29, 2012, applied Computational Aerodynamics and High
Performance Computing in the UK. [Online]. Available: http:
/Iwww.sciencedirect.com/science/article/pii/S0376042112000371

[3] I. Comprés, A. Mo-Hellenbrand, M. Gerndt, and H.-J. Bungartz,
“Infrastructure and api extensions for elastic execution of mpi
applications,” in Proceedings of the 23rd European MPI Users’ Group
Meeting, ser. EuroMPI 2016. New York, NY, USA: ACM, 2016, pp. 82—
97. [Online]. Available: http://doi.acm.org/10.1145/2966884.2966917

[4] P. Zaspel and M. Griebel, “Massively parallel fluid simulations on
amazon’s hpc cloud,” in 2011 First International Symposium on Network
Cloud Computing and Applications, Nov 2011, pp. 73-78.

[5] C. Felippa, “Introduction to finite element methods,” University of
Colorado at Boulder.

[6] J. H. Ferziger and M. Peri¢, Computational Methods for Fluid Dynamics,
third, rev. edition ed. Berlin, Heidelberg and s.l.: Springer Berlin
Heidelberg, 2002. [Online]. Available: http://dx.doi.org/10.1007/978-3-
642-56026-2

[7] O. Inc. (2019) About
/Iwww.openfoam.com/

[8] AWS. (2019) Buckets. [Online]. Available: https://docs.aws.amazon.
com/AmazonS3/latest/dev/Introduction.html#BasicsBucket

[91 G. Cloud. (2019) Machine types. [Online]. Available: https://cloud.

google.com/compute/docs/machine-types

G. C. Storage. (2019) Cloud Storage - Online Data Storage. [Online].

Available: https://cloud.google.com/storage/

C. Education. (2019) Containerization. [Online]. Available: https:

/Iwww.ibm.com/cloud/learn/containerization

OpenFOAM. [Online]. Available: https:

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

D. Inc. (2019) What is a Container? [Online]. Available: https:
/Iwww.docker.com/resources/what-container

C. Boettiger, “An introduction to docker for reproducible research, with
examples from the R environment,” CoRR, vol. abs/1410.0846, 2014.
[Online]. Available: http://arxiv.org/abs/1410.0846

openfoamplus. (2019) OpenFOAM(v1806) provided by OpenCFD Ltd.
[Online]. Available: https://hub.docker.com/r/openfoamplus/of_v1812_
centos73

J. Slawinski, T. Passerini, U. Villa, A. Veneziani, and V. Sunderam,
“Experiences with target-platform heterogeneity in clouds, grids, and
on-premises resources,” in 2012 IEEE 26th International Parallel and
Distributed Processing Symposium Workshops PhD Forum, May 2012,
pp. 41-52.

R. Ledyayev and H. Richter, “High performance computing in a cloud
using openstack,” Cloud Computing, pp. 108-113, 2014.

R. Wardlaw and G. Moss, “A standard tall building model for the
comparison of simulated natural winds in wind tunnels,” CAARC, CC
662m Tech, vol. 25, 1970.

B. Strahm, “Validation of computational wind engineering techniques
for tall buildings,” Masterarbeit, Technical University of Munich, 2019.

https://www.researchgate.net/publication/341405871

