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ABSTRACT
With the advent of serverless computing in different domains, there
is a growing need for dynamic adaption to handle diverse and het-
erogeneous functions. However, serverless computing is currently
limited to homogeneous Function-as-a-Service (FaaS) deployments
or simply FaaS Deployment (FaaSD) consisting of deployments of
serverless functions using a FaaS platform in a region with certain
memory configurations. Extending serverless computing to sup-
port Heterogeneous FaaS Deployments (HeteroFaaSDs) consisting
of multiple FaaSDs with variable configurations (FaaS platform, re-
gion, and memory) and dynamically load balancing the invocations
of the functions across these FaaSDs within a HeteroFaaSD can
provide an optimal way for handling such serverless functions.

In this paper, we present a software system called Courier
that is responsible for optimally distributing the invocations of
the functions (called delivering of serverless functions) within the
HeteroFaaSDs based on the execution time of the functions on the
FaaSDs comprising the HeteroFaaSDs. To this end, we developed
two approaches: Auto Weighted Round-Robin (AWRR) and Per-
Function Auto Weighted Round-Robin (PFAWRR) that use func-
tions execution times for delivering serverless functions within
a HeteroFaaSD to reduce the overall execution time. We demon-
strate and evaluate the functioning of our developed tool on three
HeteroFaaSDs using three FaaS platforms: 1) on-premise Open-
Whisk, 2) AWS Lambda, and 3) Google Cloud Functions (GCF). We
show that Courier can improve the overall performance of the
invocations of the functions within a HeteroFaaSD as compared to
traditional load balancing algorithms.
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• Computer systems organization→ Cloud computing.
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1 INTRODUCTION
Function-as-a-Service (FaaS) and serverless computing, in general,
have received a growing interest since the launch of AWS Lambda
to the general public in 2014 [5]. Developers benefit from various
aspects of FaaS computing such as no infrastructure management,
automatic scalability, and faster deployments [14]. From an eco-
nomic point of view, FaaS can reduce the cost of operation due to
fine-grained on-demand automatic scaling. Additionally, the lack of
server management can decrease the time-to-market for an appli-
cation [33]. The FaaS paradigm can be used for building a myriad
of applications such as web applications, IoT, BigData workloads,
Chatbots and Amazon Alexa, as well as IT Automation [10, 16].

Currently, homogeneous FaaS deployments dominate the land-
scape of serverless computing. We refer to a Homogeneous FaaS
Deployment or simply FaaS Deployment (FaaSD) as the deployment
of serverless functions on a FaaS platform (e.g. AWSLambda, Google
Cloud Functions (GCF) or OpenWhisk) with a certain memory con-
figuration in a specific region. The FaaS platform is responsible for
providing resources for function invocations and performs auto-
matic scaling. This is done by creating an execution environment
that provides a secure and isolated runtime for the function. The
amount of resources for an execution environment are typically
decided based on the maximum amount of memory and execu-
tion time (timeout) statically specified by the user on function
creation [17]. The amount of memory configured is important since
some commercial FaaS providers increase the amount of compute
available to the function when more memory is assigned [11, 24].
If a function invocation violates these constraints, the FaaS plat-
form immediately terminates the invocation. Therefore, a function
invocation might get prematurely terminated if it requires high
computing power and is executed in an execution environment with
low compute capabilities. However, the resource (storage, memory,
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Figure 1: Three different ways of achieving Heterogeneous FaaS Deployment (HeteroFaaSD).

compute, and network) requirements for serverless functions are
very dynamic and can differ vastly [26].

Heterogeneous FaaS Deployment (HeteroFaaSD) is the deploy-
ment that consists of multiple FaaSDs with each of these deploy-
ments differing from another on a particular configuration parame-
ter (FaaS platform, memory, or region) and keeping the other pa-
rameters fixed. In the following paragraphs, we highlight different
ways by which HeteroFaaSD can be achieved by using a serverless
function (deployed with the initial configuration of 512MB memory
in Europe-Central-1 region on AWS Lambda):

Memory-based HeteroFaaSD: A HeteroFaaSD where only the
memory configuration is changed between the FaaSDs making it.
Figure 1a shows the 90𝑡ℎ percentile execution time of the function
when deployed with different memory configurations on AWS
Lambda. It first decreases with the increase in memory, and after a
point (2048MB), it becomes constant. Therefore, dynamically using
a lower memory FaaSD within a Memory-based HeteroFaaSD based
on the workload may reduce the overall cost at a similar Service-
Level Objective (SLO) [4].

Region-based HeteroFaaSD: Here the FaaSDs forming the
HeteroFaaSD are deployed in the different regions. Figure 1b shows
the variations in the 90𝑡ℎ percentile execution time of the same
function when deployed in three different regions on AWS Lambda.
Since executing functions geographically near the end-user would
reduce bandwidth delays [6], we can observe from Figure 1b that the
function executing in a FaaSD closer to the client (Europe-Central-1
region) takes less time as compared to the other two FaaSDs.

Platform-based HeteroFaaSD: Here the FaaSDs forming the
HeteroFaaSD are deployed using different FaaS platforms. These
different platforms can be commercial offerings or private self-
hosted open-source FaaS platforms. Figure 1c shows the variations
in the 90𝑡ℎ percentile execution time of the same function when
deployed with three public providers: AWS Lambda, GCF, and IBM
Cloud Functions, and one private self-hosted OpenWhisk. In Open-
Whisk, compute resources are not proportional to the amount of
memory configured. Hence, it can process the same workload much
faster than others at lower memory configurations. However, after
2048MBmemory, all FaaSDs behave the same. Including non-public

FaaSDs can help with data protection and privacy laws and can
also mitigate the effects of vendor lock-in [30].

The examples above highlight three main ways to form a Het-
eroFaaSD and show the different advantages offered by them. Since
Function-as-a-Service (FaaS) workloads can incorporate several
different languages and SDKs, these workloads can benefit from
different aspects of the underlying FaaSDs in a HeteroFaaSD. For
instance, workloads that are heavily based on video processing can
operate more efficiently if the executing FaaSD has a GPGPU, or
running the functions in a FaaSD closer to the user would reduce
the latency. Hence, distributing serverless functions invocations
(referred to delivering of serverless functions in this paper) across
FaaSDs within a HeteroFaaSD can provide an optimal way for han-
dling serverless functions with high dynamism and heterogeneity.

Towards this, we developCourier a tool for delivering serverless
functions across FaaSDs within a HeteroFaaSD. Our key contribu-
tions are:

• We develop and present a novel system called Courier that
can deploy and orchestrate serverless functions within Het-
eroFaaSD(s) based on execution time. To the best of our
knowledge, this is the first work that extends serverless com-
puting to multiple FaaS platforms using HeteroFaaSDs.

• We propose and implement two function delivering algo-
rithms: 1) Auto Weighted Round-Robin (AWRR), and 2) Per-
Function Auto Weighted Round-Robin (PFAWRR) to reduce
the overall execution times of the invocations of the func-
tions without requiring manual intervention of developers
or clients.

• We evaluate our developed tool and algorithms against two
frequently used algorithms (Round-Robin (RR), andWeighted
Round-Robin (WRR)) by creating three HeteroFaaSDs us-
ing different combinations of three FaaS platforms: 1) AWS
Lambda, 2) GCF and 3) Private self-hosted OpenWhisk.

Paper organization. Section 2 describes some of the prior works
in this domain. Section 3 gives a general overview of the existing
load balancing algorithms and describes the two proposed algo-
rithms. In Section 4, the system architecture of Courier and its
components are explained. In Section 5, we describe the perfor-
mance evaluation setup along with the various benchmarks. In



Section 6, performance evaluation results are presented and Sec-
tion 7 summarizes the discussion of those results. Finally, Section 8
concludes the paper and presents an outlook.

2 RELATEDWORK
Connecting multiple cloud services has been actively researched in
the community. We present previous works from two aspects:

2.1 Connecting multiple cloud platforms
Brogi et al. present a software system called SeaClouds that tries
to simplify distribution, monitoring, and migration of Platform-
as-a-Service (PaaS) software across multiple heterogeneous plat-
forms [7]. The SeaClouds system takes the approach of deploying
the different modules to the optimal platform, i.e., the platform
that fulfills the requirements of the specific module. Additionally,
it monitors the platform to ensure that it meets the requirements
in the future. Our system consists of similar components like Sea-
Clouds. However, due to the nature of FaaS, we developed additional
components like a load balancer.

Apache Brooklyn is software to control deployment, monitor-
ing, and management of applications in cloud environments [8]. It
works by connecting different APIs and SDKs to provide a single
software interface. It can conduct complex actions such as deploy-
ing a new webserver instance and configuring the load balancer
afterward. The developer can specify such actions via pre-defined
policies and rules described in so-called blueprints in YAML syntax.
Unfortunately, Apache Brooklyn has no direct support for FaaS.

2.2 Connecting multiple FaaS platforms
Aske et al. present a software system that helps developers define
custom scheduling strategies [1]. In their work, they connected two
commercial FaaS offerings (AWS Lambda and IBM Bluemix) and
one local OpenWhisk cluster to their service. They implemented
a low-latency scheduling algorithm that forwards the requests to
the cluster with the lowest Round Trip Time (RTT). Based on that
algorithm, they can reduce the overall computation time drasti-
cally. However, their system does not distinguish between homoge-
neous or heterogeneous deployments. We use a similar approach to
leverage the benefits of HeteroFaaSDs by developing a scheduling
algorithm for delivering the serverless functions.

In our previous research, we present the concept of a Function
Delivery Network (FDN) consisting of a network of multiple hetero-
geneous target platforms orchestrated by a control plane capable
of placing functions into several FaaS platforms [20, 21]. The FDN
allows combining FaaS platforms with different software and hard-
ware characteristics. Doing so allows to reduce the overall energy
consumption and provide better response times and optimized data
placement. To the best of our knowledge, there has been no imple-
mentation of FDN in literature. In this work, we present Courier
which is the first implementation of FDN but with higher granular-
ity by using HeteroFaaSDs incorporating heterogeneous platforms
as one of its subset under Platform-based HeteroFaaSD.

Google Cloud Platform (GCP) has introduced load balancing
of user requests to a serverless network endpoint group (NEG)
that consists of a Cloud Run, App Engine, or Cloud Functions ser-
vice [32]. The load balancer serves as the frontend and proxies

traffic to the specified serverless endpoint in this service. If the
backend service contains multiple serverless NEGs, the load bal-
ancer balances traffic between these NEGs, thus minimizing request
latency. However, serverless NEGs can point only to Cloud Func-
tions residing in the same region where the NEG is created, and it
is only restricted to their infrastructure. This is not the case with
our implementation; Courier can work with multiple regions and
multiple public cloud providers.

Furthermore, the load balancer to serverless NEG cannot detect
if the underlying serverless resource (such as an App Engine, Cloud
Functions, or Cloud Run (fully managed) service) is working as
expected. This means that if a function deployed on GCF in one
region is returning errors, but the overall infrastructure is operating
normally, then the load balancer will not automatically direct traffic
away to other regions. This is mitigated in our implementation by
redirecting the traffic to other FaaSDs in different regions depending
on their response times. Additionally, a serverless NEG can only
represent a group of services sharing the same URL pattern. This
will not work if we use multiple platforms, whereas our developed
system, Courier can work with multiple URL patterns.

3 FUNCTIONS DELIVERING ALGORITHMS
Since delivering of functions can be at the primary level compared
with load balancing functions invocations problem. Therefore, we
first describe the existing approaches that address the load balanc-
ing problem. Following this, we present our proposed algorithms.

3.1 Existing Approaches
Existing approaches can be categorized into two categories:

Static load balancing algorithms derive their decisions based on
pre-defined parameters which do not get updated. Static algorithms
offer low computational overheadwith decent results [35]. However,
most static algorithms do not include overload protection [13].
Popular load balancers such as the AWS Elastic Load Balancer [3]
and the NGINX load balancer rely on static algorithms [2, 29].
The most prominent static algorithms are the Round-Robin (RR)
and Weighted Round-Robin (WRR) algorithm. Round-Robin (RR)
distributes the requests equally to all available targets (in our case
FaaSDs within a HeteroFaaSD) whereas Weighted Round-Robin
(WRR) assigns requests to targets in a rotatingmanner by respecting
pre-defined weights for each target. Other examples are Min-Min
or Max-Min algorithms. These algorithms assign application tasks
with the shortest (or longest) execution time to the target with
minimal load. In general, static load balancing algorithms have
the disadvantage that they do not directly react to changes in the
runtime behavior of functions or the load on the target [13].

Dynamic algorithms take the state of the target systems into
account when scheduling [13]. By respecting the system state, the
algorithms try to prevent the overloading of the target systems.
This comes at the cost of increased overhead and network commu-
nication [38]. Least-connection-based algorithms count the number
of open connections to a target. They then try to keep these in
balance (e.g., according to a pre-defined weight in the Weighted
Least Connection algorithm [38]). Another dynamic approach is the
prediction of the future workload, as shown by Lavanya et al. [25].



Algorithm 1: AWRR Algorithm
Input: 𝑎𝑣𝑔_𝑒𝑥𝑒𝑐_𝑡𝑖𝑚𝑒𝑠 = [],𝑚𝑎𝑥_𝑠𝑢𝑚_𝑤𝑒𝑖𝑔ℎ𝑡𝑠 , number of

FaaSDs 𝐷
Output:𝑊 = [] weights for each FaaSD

1 min_weight = 1, weights_sum = 0;
2 W = [1,1,..1] ; // equal weights for each FaaSD

3 𝑚𝑎𝑥_𝑒𝑥𝑒𝑐_𝑡𝑖𝑚𝑒 = Max(𝑎𝑣𝑔_𝑒𝑥𝑒𝑐_𝑡𝑖𝑚𝑒𝑠)
4 for 𝑖 ∈ 𝐷 do
5 𝑡𝑖 = 𝑎𝑣𝑔_𝑒𝑥𝑒𝑐_𝑡𝑖𝑚𝑒𝑠𝑖 ;
6 𝑤𝑖 =

𝑚𝑎𝑥_𝑒𝑥𝑒𝑐_𝑡𝑖𝑚𝑒
𝑡𝑖

;
7 𝑤𝑒𝑖𝑔ℎ𝑡𝑠_𝑠𝑢𝑚 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑠_𝑠𝑢𝑚 +𝑤𝑖 ;
8 end
9 for 𝑖 ∈ 𝐷 do
10 𝑤𝑖 = max(floor(( 𝑤𝑖

𝑤𝑒𝑖𝑔ℎ𝑡𝑠_𝑠𝑢𝑚 ) ×
𝑚𝑎𝑥_𝑠𝑢𝑚_𝑤𝑒𝑖𝑔ℎ𝑡𝑠),𝑚𝑖𝑛_𝑤𝑒𝑖𝑔ℎ𝑡)

11 end
12 return𝑊

This prediction can also help to improve the overall energy effi-
ciency as unused machines could be turned off. Tong et al. present
an algorithm that calculates the residual load rate of each server [38].
This rate indicates the remaining capacity of that specific target.
The algorithm groups targets with similar residual load rates and
distributes the requests in a WRR fashion between them.

3.2 Our Approach
For our algorithm design, we combine a static algorithm with the
aspects of a dynamic algorithm. We chose the Weighted Round-
Robin (WRR) algorithm as it offers better performance than Min-
Min-based algorithms while having a very low overhead [35]. We
do not consider Least Connection-based algorithms, as they have
a significantly higher overhead. In the following subsections, we
provide more details on the two designed algorithms.

3.2.1 Auto Weighted Round-Robin (AWRR). The pseudocode for
the AWRR algorithm is shown in Algorithm 1. The algorithm repre-
sents a dynamic version of a WRR algorithm as it adapts its weights
according to the functions execution time in the target FaaSDs
within a HeteroFaaSD. It initially assigns equal weights to all the
target FaaSDs and periodically updates them to reflect changes
in the target FaaSDs. The average execution time (measured in
milliseconds) of the functions within a FaaSD is used as the main
metric for the weight estimation. We use this metric to prevent
overloading of the target FaaSDs similar to the Least Connection-
based algorithms. The algorithm builds a mean value for the metric
across a specific time delta 𝛿 for each FaaSD within a HeteroFaaSD.
It then determines the maximum execution time from the average
execution times of FaaSDs (Line 3). Based on this, it calculates the
weight of each FaaSD by dividing the maximum execution time by
the FaaSD’s average execution time (Line 5-7). Then, the weights
of each FaaSD are normalized by using a maximum sum weight
provided by the user (Line 9-11).

Algorithm 2: PFAWRR Algorithm
Input: 𝑎𝑣𝑔_𝑓 𝑢𝑛𝑐_𝑒𝑥𝑒𝑐_𝑡𝑖𝑚𝑒𝑠 = [[]],𝑚𝑎𝑥_𝑠𝑢𝑚_𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ,

number of functions 𝐹 , number of FaaSDs 𝐷
Output:𝑊 = [[]] weights per function per FaaSD

1 min_weight = 1;
2 𝑊 = [[]] ; // a 𝐹 × 𝐷 2-d matrix initialized to 1

3 for 𝑓 ∈ 𝐹 do
4 weights_sum = 0 ;
5 𝑚𝑎𝑥_𝑡𝑖𝑚𝑒 =Max(𝑎𝑣𝑔_𝑓 𝑢𝑛𝑐_𝑒𝑥𝑒𝑐_𝑡𝑖𝑚𝑒𝑠 [𝑓 ] [:]) for

𝑖 ∈ 𝐷 do
6 𝑡𝑓 𝑖 = 𝑎𝑣𝑔_𝑓 𝑢𝑛𝑐_𝑒𝑥𝑒𝑐_𝑡𝑖𝑚𝑒𝑠𝑓 𝑖 ;
7 𝑊𝑓 𝑖 =

𝑚𝑎𝑥_𝑡𝑖𝑚𝑒
𝑡𝑓 𝑖

;
8 𝑤𝑒𝑖𝑔ℎ𝑡𝑠_𝑠𝑢𝑚 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑠_𝑠𝑢𝑚 +𝑊𝑓 𝑖 ;
9 end

10 for 𝑖 ∈ 𝐷 do
11 𝑤 𝑓 𝑖 = max(floor(( 𝑊𝑓 𝑖

𝑤𝑒𝑖𝑔ℎ𝑡𝑠_𝑠𝑢𝑚 ) ×
𝑚𝑎𝑥_𝑠𝑢𝑚_𝑤𝑒𝑖𝑔ℎ𝑡𝑠),𝑚𝑖𝑛_𝑤𝑒𝑖𝑔ℎ𝑡)

12 end
13 end
14 return𝑊

3.2.2 Per-Function Auto Weighted Round-Robin (PFAWRR). The
second algorithm, PFAWRR, consists of 𝐹 +1 instances of AWRR bal-
ancers, where 𝐹 is the number of known functions that have been
executed within a specific time delta 𝛿 . These instances take over
the functions delivering decisions if a client requests the respective
function. The computation of the weights for these individual bal-
ancing instances per function is computed in the same way as in
the AWRR algorithm, and its pseudocode is shown in Algorithm 2.
In this case, we use the average execution time per function within
each FaaSD (𝑎𝑣𝑔_𝑓 𝑢𝑛𝑐_𝑒𝑥𝑒𝑐_𝑡𝑖𝑚𝑒𝑠). This is a 2-dimensional ma-
trix with size 𝐹 × 𝐷 , where 𝐷 is the number of FaaSDs within
HeteroFaaSD. In the first step, the weight matrix𝑊 of the same
size as 𝑎𝑣𝑔_𝑓 𝑢𝑛𝑐_𝑒𝑥𝑒𝑐_𝑡𝑖𝑚𝑒𝑠 is initialized to 1 (Line 2). Then for
each function, FaaSDs weights are calculated in a similar manner
as in the AWRR algorithm (Line 3-12). In the first step, we find the
maximum execution time for a function in all the FaaSDs (Line
5). We calculate the weight of each FaaSD for that particular func-
tion by dividing the maximum execution time for the function by
the time taken within that FaaSD (Line 6-9). Afterward, weights
are normalized (Line 10-12). This procedure is repeated for all the
functions, and the 2-D weight array is returned.

This algorithm is designed to leverage the heterogeneity of FaaS
functions for different FaaSDs and is designed to find optimal FaaSD
within a HeteroFaaSD, i.e. the FaaSD with the shortest execution
time, for each function invocation.

Both algorithms try to avoid overloading FaaSDs within a Het-
eroFaaSD by estimating the weights as accurately as possible. For
handling overload situations, we have also implemented a compo-
nent called circuit breaker [15] as part of Courier.
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4 SYSTEM ARCHITECTURE
In this section, we give a high-level overview of the general ar-
chitecture of the Courier system. It uses the functions delivering
algorithms (§3.2) to achieve its primary goal: efficiently deliver-
ing serverless functions within a HeteroFaaSD. It also handles the
deployment of the functions. Based on the principle to "keep func-
tionally related objects together" [9], we created a 4-layer overview
of the different subsystems shown in Figure 2 and described next.

4.1 Client Layer
The Client Layer offers three perspectives to distinguish between
three types of clients: developers, administrators, and client applica-
tions that invoke the FaaS functions. Developers use the deployment
API of Courier to register and deploy new functions into the sys-
tem. Administrators can decide the functions delivering algorithm
via the Admin API. The client applications send requests to the
Courier system using the functions delivering API, and it delivers
the functions based on the chosen algorithm.

4.2 API Layer
It handles the delivery of functions for clients with a reverse proxy.
This allows the system to detect unavailable clusters without addi-
tional network overhead. Client applications (like web browsers)
use the HTTP Reverse Proxy component to invoke functions. The
Reverse Proxy uses the Control Subsystem to decide which FaaSD
within a HeteroFaaSD should execute the function and forwards
the network communication to the client and the invoking target
FaaSD. Configuration of the Courier system happens via the Ad-
min API. Administrators use the Admin API to set the functions
delivering strategy. This can be: 1) Direct FaaSD strategy where the

delivery of functions happens to only the specified FaaSD within a
HeteroFaaSD, 2) RR, 3) WRR with manually set weights, 4) AWRR,
and 5) PFAWRR. The Deployment Subsystem offers deployment in-
formation to the developer through the Deployment API.

4.3 Application Logic Layer
It handles the actual invocation of the different requests. It operates
across the following three independent services:

4.3.1 Control Subsystem. This is the heart of the Courier system.
It implements the functions delivering strategies and decides where
the functions should be invoked. It also can trigger the deployment
of a function, e.g., if it detects that a function is not available on one
of the targets FaaSDs. It then advises the Deployment Subsystem
to handle the deployment. We implemented the Control Subsys-
tem in Java. It is called Controlplane. We chose Jetty [36] as the
HTTP Server since it is a stable project with an existing reverse
proxy implementation that can be extended easily. The build system
produces one single JAR file as an artifact.

4.3.2 Monitoring Subsystem. It periodically collects available per-
formance data metrics for the functions delivering algorithms from
all FaaSDs within a HeteroFaaSD and processes them if necessary.
Performance data metrics include:

• active_instances: The number of active function instances.
• invocations: Number of times the function is executed.
• execution_time: The time spent by function in processing.
• memory_usage: Function’s memory usage during execution.
• allocated_memory: Memory allocated to the function.

It uses the Monitoring Data database to store the metrics. Its sub-
component, the Syncworker periodically gets a list of available
FaaSDs and starts the individual data collection, and uses the so-
called data writers to store the performance data.

4.3.3 Deployment Subsystem. It handles the deployment of a FaaS
function to the different FaaSDs within a HeteroFaaSD. It gets in-
voked by the Control Subsystem. It uses the FaaS Data storage to
retrieve the function source code and the deployment specification.
We implemented this using Node.js. It is called the Deployment
Agent. As the serverless framework [37] (which we use for deploy-
ment) is written in Node.js, we chose Node.js to connect with the
framework directly.

4.4 Storage Layer
It provides services to store persistent data. The Courier system
stores monitoring data and FaaS functions persistently. Persistent
storage keeps the performance stable in case of restarts. We use In-
fluxDB, a time-series database [18] as theMonitoring Data database
and a MinIO object storage [27] to handle the FaaS data.

5 PERFORMANCE EVALUATION
We first introduce the different benchmarks, i.e., FaaS functions,
along with the developed application that we use to evaluate our
system in §5.1. Following this, we describe the testing process and
evaluation infrastructure in §5.2 and §5.3 respectively.
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Figure 3: High level workflow of the evaluated application.

5.1 Benchmarks
To investigate the performance of Courier, we used a subset of
the microbenchmarks provided with the FaaSProfiler [34]. Also, we
created an application with those microbenchmarks shown in Fig-
ure 3 for our use case. The microbenchmarks used are summarized
in Table 1 along with their description and language runtimes.

The application flow starts with the nodeinfo function, which
exposes an HTTP endpoint and provides the user with basic infor-
mation about the system such as hostname, underlying architec-
ture, number of CPUs, etc. This then invokes the compute-intensive
primes-python function, which further invokes linpack and dd
asynchronously, and waits for their response to come back. dd in-
vokes gzip-compression, which further invokes lr-prediction
in a sequence. lr-prediction queries the model and data from the
google cloud storage (created in GCP in the Europe-west3 region,
AWS Lambda functions also use this storage bucket) and then per-
forms prediction. Once the response is available to the primes-p-
ython function from both invocations, it sends back the response to
the nodeinfo function, which invokes the nodejs-endpoint func-
tion. Following this, nodejs-endpoint invokes the sentiment-an-
alysis function.

5.2 Testing Process
The testing process consist of three phases as follows:

Pre-warm phase: We pre-warm the FaaSDs within a Hetero-
FaaSD to reduce the effect of cold starts. It is executed for a minute.

Testing phase: In this phase, we execute the test against one
functions delivering strategy (§4.2). This phase is run for 10 minutes.

Cooldown phase: Here the K6 engine finishes open computa-
tions and free worker resources. It is executed for 1 minute.

To unify the phase execution, we developed a testing system
via several bash scripts. These scripts use the K6 [22] load testing
framework. We collect several metrics automatically reported by
K6 [23] during load testing.

To evaluate the performance of Courier in different scenarios,
we define two different load tests. Each test is executed via multiple
so-called Virtual Users (VUs). VUs are the entities in K6 that execute
the test and make HTTP(s) requests.

T1 One function test: Here, nodeinfo function is invoked from
20 VUs with each VU executing 750 invocations for the test
duration and results in a total of about 15000 invocations.

T2 Application test: In this test, created serverless application
(§5.1) is invoked from 20 VUs with each VU executing 750
invocations for the duration of the test. This results in a total
of about 15000 invocations for the entire application.

With test T1, we evaluate the overhead of the Courier in delivering
functions as this function has the lowest processing overhead. With
test T2, we test a more complex scenario, simulating the workload
a cloud provider like AWS could potentially be faced with.

5.3 Environment
Our evaluation infrastructure consists of three different FaaS plat-
forms, two from the public cloud providers: 1) AWS Lambda, 2) GCF,
and one privately-hosted OpenWhisk platform on a single-node
dual-socket system, with each socket containing an Intel Cascade
Lake processor with 22 cores. We further used three different re-
gions for AWS lambda and three memory configurations for GCF.
Overall there are seven different FaaSDs, and these seven deploy-
ments are divided into three HeteroFaaSDs as explained below.

H1 Platform-based HeteroFaaSD: We use three FaaSDs con-
sisting of three different platforms: 1) Private OpenWhisk, 2)
AWS Lambda, and 3) GCF. All the three FaaSDs are created
in the Europe region and all the application functions are
configured with a memory of 512MB.

H2 Region-based HeteroFaaSD: Three FaaSDs are created us-
ing the GCF platform in three different regions: 1) Europe-
West3, 2) US-East1, and 3) Asia-South. All the application
functions are configured with a memory of 512MB.

H3 Memory-based HeteroFaaSD: Here, we created 3 FaaSDs
with the fixed FaaS platform as AWS Lambda and the deployed
region as Europe-Central-1. But in these FaaSDs, applica-
tion functions are deployed with three different memory
configurations: 1) 256MB, 2) 512MB, and 3) 1024MB.

We use one VM to host a Courier instance and one VM for the
K6 load testing engine. Both machines have Ubuntu 18.04, 2.4 GHz
Xeon Skylake Processor, 2vCPU cores, and 4 GB Memory.

6 RESULTS
In this section, we first present the overhead induced by theCourier.
After this, we present the performance of the individual functions
(§6.2) within the serverless application (§5.3). Following this, we
present the performance of the functions delivering algorithms
(§6.3). Finally, we present the results of the algorithms under a
high workload (§6.4). We repeat the tests five times for all our
experiments and report metrics averaged over those five runs.

6.1 Courier System Overhead
As a comparison counterpart for the system’s overhead perfor-
mance, we choose NGINX. As of November 2020, NGINX is one
of the most widely used web servers. It serves about 24% of web-
sites [28]. The developers advertise their fast performance and
scalability as one of its crucial benefits. NGINX performs load bal-
ancing via a reverse proxy. This is the same way asCourier handles
the redirect. We evaluate the performance in two aspects:



Table 1: Description of microbenchmarks used as part of the application for evaluation.

Microbenchmark Description Runtime
nodeinfo Gives basic characteristics of node like CPU count, architecture, uptime Node.js 14

primes-python Calculates prime numbers till 100000. Python 3.7

linpack
It solves a dense linear system of equations in double precision and returns the results in
GFlops. Problem size (number of equations) is fixed to 100. Python 3.7

dd
It is based on Unix dd command-line utility for converting and copying files. 128bytes as
a block size and 5 times conversion is used as parameters. Python 3.7

gzip-compression Creates a filewith randomnumbers of size 1MB and compresses it using gzip compression. Python 3.7

lr-prediction
It first downloads a linear regression model trained on user reviews data from the storage
bucket along with the test data and performs prediction on it. Python 3.7

nodejs-endpoint It is a REST endpoint which sends the current time along with the time zone. Node.js 14

sentiment-analysis Analyzes the sentiment of a provided string using the Python TextBlob library Python 3.7
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Figure 4: Evaluation of the Courier system overhead.

6.1.1 System Overhead. For this evaluation, we use the test T1
(§5.2). The function deployed using AWS Lambda in Europe-Centr-
al-1 region with 512MB memory is used as FaaSD for evaluation.
We compare the benchmark on three different scenarios:

• Direct connection (we perform the requests directly to the
FaaSD). This scenario corresponds to the baseline.

• NGINX reverse proxy.
• Courier reverse proxy with Direct FaaSD strategy (§4.2).

Figure 4a shows, the mean, 90𝑡ℎ percentile, and minimum func-
tion invocations response time for the three scenarios. Across all
response-time-based metrics, the Courier proxy performs better
than the NGINX proxy. Although the 90𝑡ℎ percentile response time
of the Courier proxy is higher as compared to the direct con-
nection’s, for other metrics, its almost equivalent. Therefore we
conclude that the system overhead is negligible for the Courier.

6.1.2 Scheduling Overhead. We execute the test T1 (§5.2) against
the round-robin strategy. Here, we only evaluate against NGINX.
Since NGINX does not support load distribution between multiple
FaaS platforms, we could only make it work with H2 HeteroFaaSD
(§5.3) where only region is changed between the FaaSD endpoints.

From Figure 4b we observe that, across most response-time-
basedmetrics, theCourier performs slightly better than the NGINX
proxy. Only the mean response time of NGINX is slightly better.
The difference in the total amount of requests processed by each
proxy is insignificant (below 0.1%), and no errors occurred. Hence,
the scheduling overhead for the Courier is also negligible.

Figure 5: P90 response times of the sandboxed functions.

6.2 Individual Function’s Performance
Usually, a serverless application consists of multiple functions, and
the performance of one function could affect the others depend-
ing on it. Therefore, to determine the individual function’s perfor-
mance from the benchmark application (§5.1) on each FaaSD (§5.3),
we need to sandbox them [19]. We use the Courier proxy to iso-
late each function and substitute its direct neighbors with dummy
functions accepting the requests and sending the responses in the
same format, but without any additional processing, allowing us to
measure the performance of that function purely. We replace the
neighboring function calls with a proxy function whose inputs are
the originally called function names and the input payload to them.
Each function invocations and response goes through the proxy
function. This dummy proxy function will invoke the next function
based on the input received, and at the same time, copies of these re-
quests and responses are stored in the MongoDB database deployed
together with Courier. Following this, each function receives its
own sandboxed deployment where dummy functions replace the
direct neighbors. These dummy functions will respond with the
response stored in MongoDB. As a result, the time taken by the
dependent functions to respond becomes negligible. This allows
us to measure the relatively pure performance of the functions.
Figure 5 shows the 90𝑡ℎ percentile response time of the sandboxed
functions when executed with test T2 (§5.2) on 7 FaaSDs (§5.3). We
make the following observations:

6.2.1 Decrease in response time with the increase in memory: In
Figure 5, we observe that for most of the functions in AWS Lambda



FaaSDs, the 90𝑡ℎ percentile response time decreases with an in-
crease in the memory. This can be attributed to an increase in the
number of allocated CPU clock cycles with increasing memory.

6.2.2 Function execution in a region closer to the user has a lower re-
sponse time than the far ones: For the three GCF FaaSDs in Figure 5,
we observe that the function in region Europe-West3 performed
far better than the other two regions due to lower communication
latency as the client was located in that region. Also, functions like
nodeinfo, dd, and gzip etc. which are calling other functions (now
dummy function deployed in Europe-West3 region) incur longer
response times compared to the ones executing in the same region
where the dummy function is deployed due to higher communi-
cation latency. Therefore, Courier proxy must handle all these
scenarios when delivering functions.

6.2.3 Functions behave differently for different FaaSDs: All the
functions when executed in the Private-OpenWhisk FaaSD per-
formed better than the other FaaSDs due to the availability of higher
resources. Additionally for functions like dd we can see a signifi-
cant performance increment when using AWS Lambda based FaaSDs
(maximum 0.08s response time) as compared to GCF based FaaSDs
(minimum 0.19s response time). On the other hand, lr-prediction
performed better on GCF based FaaSD with 512MB memory in Eu-
rope region (0.22s response time) as compared to AWS based FaaSD
with the same memory and in the same region (0.3s response time).
The heterogeneity in the performance of functions for the different
FaaSDs is used by PFAWRR algorithm when delivering functions.

6.3 Algorithms performance for HeteroFaaSDs
Now we present the performance results of the function delivering
strategies (§4.2) on three different HeteroFaaSDs:

6.3.1 Platform-based HeteroFaaSD (H1). Figure 6a shows the ag-
gregated mean, 90𝑡ℎ percentile, and 95𝑡ℎ percentile response times
of the individual FaaSDs as compared to the collaborative execution
when using different functions delivering algorithms. For the indi-
vidual FaaSDs, the Private-OpenWhisk FaaSD performs the best
(with P(90) response time as 0.61s), then comes the AWS Lambda
FaaSD (with P(90) response time as 0.90s), followed by the GCF
FaaSD (with P(90) response time as 1.20s) across all the 3 metrics.

The algorithms here have a challenge of distributing the in-
vocations to the three different FaaS platforms to provide high
performance. RR and WRR with manually assigned weights of: 3
for Private-OpenWhisk FaaSD, 3 for AWS Lambda FaaSD and 2
for GCF FaaSD, perform similar to AWS Lambda FaaSD on mean
response time metric but the P(90) (1.13s for RR and 1.09s for
WRR) and P(95) (1.16s for RR and 1.13s for WRR) response times
are more closer to the performance of GCF FaaSD. Clearly, our
manually assigned weights are not good enough to get the overall
performance closer to the AWS Lambda FaaSD or even less than it.
However, AWRR and PFAWRR have the advantage of automatically
updating the weights every 𝛿 time (in our case one minute), hence
perform better than AWS Lambda FaaSD on mean (0.73s for AWRR
and 0.71s for PFAWRR ) and P(90) (0.85s for AWRR and 0.97s
for PFAWRR) response time metric. In general for all the metrics,
PFAWRR is able to perform better than the other algorithms since
its adaptability at the function level.

Figure 7a shows the weights assignment for the three FaaSDs
within the Platform-based HeteroFaaSD during the course of the
load test for AWRR. We can observe that for a majority of the
time, Private-OpenWhisk FaaSD had the highest weight since it
can process the function invocations faster than the others. This
provides a clear advantage when new FaaSDs join the HeteroFaaSD,
i.e., the admin operators do not need to provide weights for them
manually. The AWRR algorithm can automatically determine the
weights for them based on the execution time of the functions.

6.3.2 Region-based HeteroFaaSD (H2). The aggregated mean, 90𝑡ℎ

percentile, and 95𝑡ℎ percentile response times of the individual
FaaSDs as compared to the collaborative execution when using dif-
ferent algorithms is shown in Figure 7b. For the individual FaaSDs,
the GCF FaaSD closer to the client (Europe-West3 region) per-
forms the best (with 1.29s P(90) response time), then comes the
GCF FaaSD in the US-East1 region (with 3.20s P(90) response
time), followed by the GCF FaaSD in the Asia-South1 region (with
8.08s P(90) response time) for all the three metrics.

The algorithms here distribute the invocations across the three
regions FaaSDs within a HeteroFaaSD and we can see a signifi-
cant improvement in the performance alone with the RR algorithm
(5.67s P(90) response time) as compared to the GCF FaaSDs in the
Asia-South1 region. Manually introducing weights of <3, 3, 2>
to the WRR algorithm for the FaaSDs did not have a significant im-
pact on performance in terms of 90𝑡ℎ percentile and 95𝑡ℎ percentile
response times but the mean response time (3.39s P(90) response
time) got closer to the GCF FaaSD in US-East1 region. AWRR and
PFAWRR performs better than the two GCF FaaSDs in US-East1
and Asia-South1 regions on mean (2.39s for AWRR and 2.23s
for PFAWRR) and P(95) (4.05s for AWRR and 3.78s for PFAWRR)
response time metric. This shows that the algorithms can adapt
the distribution of invocations across FaaSDs within Region-based
HeteroFaaSD. PFAWRR in general performs better than AWRR on
mean P(95) metric but falls behind slightly on P(90) metric.

When looking at the theweights assignment for the three FaaSDs
during the course of the test for AWRR in Figure 7b, we see for
majority of the time, GCF FaaSD in Europe-West3 region had the
highest weight since it is able to process the function invocations
faster than the others, while if it gets overloaded the load automati-
cally shifts to other FaaSDs.

6.3.3 Memory-basedHeteroFaaSD (H3). For the FaaSDs inMemory-
based HeteroFaaSD in Figure 6c, we observe that the AWS FaaSD
with 1024MB memory configuration performs the best (with P(90)
response time as 0.63s), followed by the FaaSDwith 512MBmemory
configuration (having P(90) response time as 0.89s), and finally the
FaaSD with 256MBmemory configuration (with P(90) response time
as 1.61s) in all the 3 metrics. This is due to AWS Lambda allocating
CPU compute proportional to the memory provisioned.

Similar to the last two HeteroFaaSDs, RR and WRR algorithm’s
90𝑡ℎ percentile, and 95𝑡ℎ percentile response timemetrics are higher
than the second most performant FaaSD, i.e. AWS FaaSD with 512MB
memory configuration, but the mean response time (1.06s for
RR and 0.94s for WRR) got closer to it (0.88s). The AWRR and
PFAWRR algorithms due to their dynamic adaptability perform bet-
ter than the other algorithms and the two AWS FaaSDs with 256MB



(a) Platform-based HeteroFaaSD (H1) (b) Region-based HeteroFaaSD (H2) (c) Memory-based HeteroFaaSD (H3)

Figure 6: Individual FaaSDs performance comparison with the developed algorithms performance in three HeteroFaaSDs.

(a) H1 (b) H2 (c) H3

Figure 7: Weights distribution among FaaSDs during evalua-
tion test for AWRR algorithm in three HeteroFaaSDs.

and 512MB memory configurations on mean (0.69s for AWRR and
0.66s for PFAWRR) and P(90) (0.87s for AWRR and 0.84s for
PFAWRR) response time metric. PFAWRR works better than AWRR
on all metrics. This shows that the designed algorithms can adapt
the distribution of functions invocations across FaaSDs distributed
over heterogeneous memory configurations. Figure 7c shows the
weights assignment for the three FaaSDs for AWRR. We observe
that most of the load is directed to the FaaSD with the highest mem-
ory since it is processing the invocations faster than the others.

6.4 Performance under high workload
To evaluate the performance of the algorithms under high load,
we performed the testing with 50 VUs for the test T2 with H1
HeteroFaaSD (§5.3, §5.2) where the number of requests were dy-
namically adjusted based on the response time [22].

The performance in this test is shown in Figure 8a. We observe
that not all the functions delivering algorithms could manage to
serve a total of 25716 requests within the 10 minutes testing time
which AWRR and PFAWRR algorithms manage to complete. How-
ever, the PFAWRR algorithm completes them faster. In this scenario,
the AWRR algorithm outperforms both the RR andWRR algorithms
by a significant number of requests and time. The PFAWRR strat-
egy can leverage individually generated weights and thus performs
the best. On the other hand, AWRR can adapt dynamically to the
overloaded FaaSDs and send the invocations to other FaaSDs. Dur-
ing this test, we also started seeing failing requests which indicate
that FaaSDs are overloaded. Figure 8b shows the number of failed
requests. Most of the failures reported above were timeouts. Since
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Figure 8: Performance results under high user workload.

only AWRR and PFAWRR were able to complete all requests, there-
fore based on the failed requests we calculated the percentage
availability of the FaaSDs within a HeteroFaaSD when using the
two algorithms as: AWRR - 99.84%, and PFAWRR - 99.86%. Both
the algorithms provide high availability.

7 DISCUSSION
In this section, we discuss our results from two aspects:

7.1 System Performance
As shown in §6.1, the Courier system can efficiently execute sched-
uling decisions and delivery of functions. Compared to NGINX,
Courier performs better in delivering functions within the H2
HeteroFaaSD (§5.3). In our testing scenario, we tested the current
implementation of Courier (§4) by deploying it to one single virtual
machine. This implementation is somewhat limited in the number
of requests that it can handle, as after a certain number of requests,
the Courier system would be overloaded. However, since Courier
is designed using a microservices architecture and made of tools
(for example, MinIO, InfluxDB, etc.) that support deployment across
multiple nodes, it can be easily extended to be deployed on a mul-
tiple node cluster as well. For example, the reverse proxy within
Courier does not carry any stateful information. Therefore, reverse
proxy instances are easily scalable on-demand without additional
development effort.



7.2 Algorithms Performance
Courier already provides benefits for the cluster administrators.
Generally, our algorithms made better functions delivering deci-
sions as compared to traditional load balancing algorithms (§6.3).
This means that administrators can easily add new FaaSDs within
a HeteroFaaSD and the Courier functions delivering algorithm au-
tomatically profiles these FaaSDs while end-users are already using
them. We analyze the two designed algorithms in more details :

7.2.1 Auto-Weighted Round Robin. The Auto Weighted Round-
Robin (AWRR) algorithm itself does provide good results while
delivering functions within the HeteroFaaSDs (§6.3). In all the test-
ing scenarios, we observed that the weight generation based on
average execution times of all the functions running in a FaaSD
could provide good insight into the computational capabilities of the
FaaSD. Furthermore, the automatic dynamic changes in weights for
each FaaSD within a HeteroFaaSD (Figure 7) during the testing sce-
narios shows the algorithm’s adaptability if a FaaSD is overloaded.
However, the frequent collection of metrics from each FaaSD can
induce an additional overhead on the FaaSD, which can be avoided
by setting the optimal weight update 𝛿 time. Additionally, if the
differences in runtime are not big, then all the FaaSDs within a
HeteroFaaSD will be assigned with the same weights. This algo-
rithm can be easily extended to work on other metrics as well.

7.2.2 Per-Function Auto Weighted Round Robin. The Per-Function
Auto Weighted Round-Robin (PFAWRR) algorithm was able to per-
form better or equivalent to AWRR algorithm when delivering the
functions within the HeteroFaaSDs (§6.3). However, it performed
much better under heavy load and outperformed the other algo-
rithms. This algorithm leverages the heterogeneity of the func-
tions and the underneath capabilities of FaaSD by assigning higher
weights to functions for FaaSDs where they can operate more ef-
ficiently or to FaaSDs closer to the location of the user so that
the overall latency is reduced. A drawback of the PFAWRR algo-
rithm is that it requires all the functions to be invoked once on
all the FaaSDs within a HeteroFaaSD. Once that is done, it can
provide good functions delivering decisions. If all the functions
have not been invoked once, the PFAWRR strategy would have to
"warm-up," i.e., learn from previous invocations by providing some
historical data or manual feeding of information. During that time,
the PFAWRR strategy will perform similarly to the RR strategy.

8 CONCLUSION
Due to the current limitations of serverless computing for highly
dynamic applications in their structure and computational require-
ments, we introduced the Courier enabling the automatic deliv-
ering of serverless functions within HeteroFaaSDs based on the
execution time of functions on FaaSDs within the HeteroFaaSDs.
We evaluated Courier on three HeteroFaaSDs using three FaaS
platforms (§6.3). Furthermore, we introduced two new algorithms:
AWRR and PFAWRR, purposefully built for delivering functions and
compared them against the traditional load-balancing algorithms.
We found that collaborative execution of the functions between the
FaaSDs within a HeteroFaaSD using AWRR and PFAWRR can lead
to higher performance as compared to scenarios where functions
are exclusively invoked on most of the individual FaaSDs.

The Courier can be extended to further increase the adoption
of FaaS in HeteroFaaSDs. The function delivering decision making
can be improved to include various aspects such as cold starts,
scientific workflows [12], and parallel executions as well [31].
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