DeepEdgeBench: Benchmarking Deep Neural Networks on Edge Devices

Abstract

EdgeAI (Edge computing based Artificial Intelligence) has been most actively researched for the last few years to handle variety of massively distributed AI applications to meet up the strict latency requirements. Meanwhile, many companies have released edge devices with smaller form factors (low power consumption and limited resources) like the popular Raspberry Pi and Nvidia’s Jetson Nano for acting as compute nodes at the edge computing environments. Although the edge devices are limited in terms of computing power and hardware resources, they are powered by accelerators to enhance their performance behavior. Therefore, it is interesting to see how AI-based Deep Neural Networks perform on such devices with limited resources. In this work, we present and compare the performance in terms of inference time and power consumption of the four SoCs: Asus Tinker Edge R, Raspberry Pi 4, Google Coral Dev Board, Nvidia Jetson Nano, and one microcontroller: Arduino Nano 33 BLE, on different deep learning models and frameworks. We also provide a method for measuring power consumption, inference time and accuracy for the devices, which can be easily extended to other devices. Our results showcase that, for Tensorflow based quantized model, the Google Coral Dev Board delivers the best performance, both for inference time and power consumption. For a low fraction of inference computation time, i.e. less than 29.3% of the time for MobileNetV2, the Jetson Nano performs faster than the other devices.

Publication
IEEE International Conference on Cloud Engineering (IC2E)
Anshul Jindal
Anshul Jindal
Ph.D. Student

My research interests include cloud computing, specifically focussing on serverless computing for heterogeneous systems, edge computing, and AIOps.