
From DevOps to NoOps : Is it Worth it?

Anshul Jindal[0000−0002−7773−5342] and Michael Gerndt[0000−0002−3210−5048]

Chair of Computer Architecture and Parallel Systems,
Technical University of Munich, Garching, Germany

anshul.jindal@tum.de, gerndt@in.tum.de

Abstract. With the rise of the adoption of microservices architecture
due to its agility, scalability, and resiliency for building the cloud-based
applications and their deployment using containerization, DevOps were in
demand for handling the development and operations together. However,
nowadays serverless computing offers a new way of developing and deploy-
ing cloud-native applications. Serverless computing also called NoOps,
offloads management and server configuration (operations work) from
the user to the cloud provider and lets the user focus only on the prod-
uct developments. Hence, there are debates regarding which deployment
strategy to use.
This research provides a performance comparison of a cloud-native web
application along with three different function benchmarks in terms of
scalability, reliability, and latency when deployed using DevOps and
NoOps deployment strategy. NoOps deployment in this work is achieved
using Google Cloud Function and OpenWhisk, while DevOps is achieved
using the Kubernetes engine. This research shows that neither of the
deployment strategies fits all the scenarios. The experimental results
demonstrate that each type of deployment strategy has its advantages
under different scenarios. The DevOps deployment strategy has a huge
performance advantage (almost 72% lesser 90 percentile response time)
for simple web-based requests and requests accessing databases while
compute-intensive applications perform better with NoOps deployment.
Additionally, NoOps deployment provides better scaling-agility as com-
pared to DevOps.

Keywords: Microservices, Serverless, DevOps, NoOps, Cloud-native
Applications, Cloud Computing.

1 Introduction

Cloud computing providing a ”pay-as-you-go” model, enables cheap and easy
access to the data processing and storage resources. Nowadays most enterprises
have migrated or refactored their existing monolithic-based applications into
the microservices architecture and deployed it on the cloud [13]. Microservices
architecture offers higher agility since it decouples a big application service into
smaller microservices and each microservice is then deployed separately either
on a virtual machine or in a container where the resources can be scaled on-
demand. Developers are now not only assigned the task for the development of



2 Jindal et al.

the microservices but also include the operations task like deployments, therefore
are called DevOps. DevOps is the fusion of development and operations. It drives
the services lifecycle, from the design to the delivery. Besides many advantages,
microservices architecture also has some disadvantages in software development.
For instance, each service communicates through the network via REST API
endpoints, which can pose data security concerns during the communication.
Also, network latency and load balancing do arise. Furthermore, research shows
that the development team with a strong DevOps culture may get benefit from
the microservices architecture, therefore the effort to establish DevOps culture is
another consideration for adopting a microservices architecture [38].

On the other hand, serverless computing has gained higher popularity and
more adoption in different fields since the launch of AWS Lambda in 2014 [18].
Serverless computing is a cloud computing model that abstracts server manage-
ment and infrastructure decisions away from the users [43]. In this model, the
allocation of resources is managed by the cloud service provider rather than by the
team of application developers. In other words, DevOps are free from operations
work and can purely focus on development and is therefore called NoOps. Also,
in serverless computing cost is charged on the number of requests received to the
functions and the time it takes for the code to execute [16]. This pricing model
is much simpler as compared to the traditional instance pricing model which is
based on the number of instances and their diverse types. Therefore, application
owners in this model are also free from the decisions of choosing instance types
and several instances. Function-as-a-Service (FaaS) is a key enabler of serverless
computing [43]. In FaaS, an application is decomposed into simple, standalone
functions that are uploaded to a FaaS platform for execution. These functions
are stateless, i.e., the state is not kept across function invocations. Functions
can be invoked by a user’s HTTP request or by another type of event created
within the FaaS platform. The FaaS platform is responsible for deploying and
facilitating resources to the application functions. Currently, there exist many
open source and commercial FaaS platforms [30]. All of the large cloud providers
have FaaS platforms available based on a container orchestration platform such as
Kubernetes. In this work, we have used OpenWhisk and Google Cloud Function
as the FaaS platforms for deploying application functions.

Both DevOps and NoOps methodologies have their advantages and disadvan-
tages and the decision to adopt a design pattern depends on the team capability
and project requirements. In this research, we have analyzed a cloud-native web
application along with 3 function benchmarks refactored into both microser-
vices and FaaS deployment models from the aspect of scalability, reliability, and
latency. The experimental results demonstrate that the DevOps deployment
strategy has a huge performance advantage (almost 72% lesser percentile-90
response time) for simple web-based requests and requests accessing databases
while compute-intensive applications perform better with NoOps deployment.
Additionally, NoOps deployment provides better scaling-agility as compared to
DevOps.

The main contribution of this paper are as follows:



From DevOps to NoOps : Is it Worth it? 3

– Performance comparison between DevOps and NoOps deployment method-
ologies using two different methods in terms of scalability, reliability, cost, and
latency. In our previous work [15], we compared microservices to serverless
using AWS Lambda as the FaaS platform and a native cloud web application
but in this work, we have extended it by using OpenWhisk and Google Cloud
Functions as FaaS platforms. Furthermore, we have added additional function
benchmarks and an application for the evaluations.

– Performance comparison between OpenWhisk and Google Cloud Functions
is presented as part of this work and we are the first one to do so.

– We highlight different use cases recommendations where DevOps and NoOps
deployment methodologies can be used based on the type of load, scenario,
and the amount of the requests.

The rest of this article is composed as follows. Section 2 discusses the back-
ground knowledge required for this paper in brief. Section 3 provides the overall
methodology used for the evaluation including the different methods and load
test settings. Section 4 showcase the results of the conducted analysis. Section 5
summarizes the discussion of the results and in section 6 we describe some of the
previous works in this domain. Lastly, section 7 concludes the paper.

2 Background

In this section, we first present an overview of the DevOps and NoOps deployments
cloud model. Following this, we describe the architecture and high-level workflow
of the two FaaS platforms used in this work.

2.1 DevOps-based Cloud Model

DevOps cloud model is based on the microservices architecture where the develop-
ers are responsible both for the development and operations task. Microservices
consists of a suite of modules, and each module is dedicated to a specific business
goal and communicates via a well-defined interface. The principle of DevOps cloud
model architecture is loose-coupling, which requires multiple service instances
for an application [36]. The deployment of DevOps cloud model can be achieved
either by deploying each microservice on a separate virtual machine instance or
deploying microservices per container or one can even combine multiple microser-
vices per virtual machine and container. The containerization deployment benefits
from the higher deployment speed, agility, and lower resources consumption [37].
This strategy also allows each microservice instance to run in isolation on a
host. This enables the guaranteed quality of service for each microservice at
the cost of idle resources. Container orchestration tools like Kubernetes1 and
Google Kubernetes Engine (GKE)2 can be used for managing the microservices
containers.

1 https://kubernetes.io/docs/
2 https://cloud.google.com/kubernetes-engine



4 Jindal et al.

The benefits of this model are improved fault tolerance, flexibility in using
technologies and scalability, and speed up of the application [32]. However,
there are also some disadvantages such as the increase of development and
deployment complexity, implementing an inter-service communication mechanism,
and challenging to conduct end-to-end testing [11].

2.2 NoOps-based Cloud Model

NoOps cloud model is based on the serverless computing where Function-as-a-
Service (FaaS) platform facilitates application development and the user does not
have to worry about the infrastructure management, but only about the code
being deployed. The pricing is charged based on the number of requests to the
functions and the duration, the time it takes for the function code to execute [1].
The latter varies according to the number of resources such as memory and CPU
cores allocated to the function, and are automatically adapted to deliver the
best performance. Instead of developing application logic in the form of services
and managing the required resources, the application developer implements fine-
grained functions connected in an event-driven application and deploys them into
the FaaS platform [43]. The platform is responsible for providing resources for
function invocations and performs automatic scaling depending on the workload.
The functions can be closely integrated with other services, e.g., cloud databases,
authentication and authorization services, and messaging services. These services
are called Backend-as-a-Service (BaaS). BaaS are the third-party services that
replace a subset of functionality in a function and allow the users to only focus
on the application logic [25]. In FaaS, function invocations are handled by using
containers. Since functions are stateless, the state of the application is stored in
databases. In comparison to DevOps model, NoOps has three advantages (1) no
continuously running services are required, (2) functions are only charged when
they are executed, and (3) the function abstraction increases the developer’s
productivity.

One of the biggest differences between other forms of cloud models and the
NoOps model is scalability [21]. The application automatically scales up or down
based on the resource usage (with scaling down to zero number of instances
as well) and developers do not have to specify any scaling parameters. The
infrastructure of the cloud service provider starts up ephemeral instances of each
function on-demand. In general, the total cost of ownership decreases.

NoOps based functions can be invoked by a user’s HTTP request or by another
type of event created within a FaaS platform. The FaaS platform is responsible
for providing resources for function invocations and performs automatic scaling.
Currently, a significant number of open source and commercial FaaS platforms are
available [30]. FaaS platforms implementations are based on starting containers
for function invocations on top of a container orchestration platform such as
Kubernetes. Applications are defined via a deployment specification that describes
the functions, APIs, permissions, configurations, and events that make up a
serverless application. The specification can be given via a command-line or web
interface, or by using some frameworks like Serverless [39] and Architect [7].



From DevOps to NoOps : Is it Worth it? 5

We introduce in the following subsections two FaaS platforms which are used
as part of this work.

2.2.1 OpenWhisk (OW)

Apache OpenWhisk is a serverless open source cloud platform that was originally
developed by a research group at IBM in 2015 and was released in December
2016. It was later donated to the Apache Software Foundation [33]. It powers
IBM’s serverless offering, IBM Cloud Functions, and implements FaaS on top of
Kubernetes as the container orchestration platform. Functions in OpenWhisk are
called actions and the execution of an action is called an invocation. Actions and
rules can be created through the command-line interface (CLI) (wsk [5]), user
interface (UI), or SDK. Created actions can then be invoked either manually
through the same methods or by event triggers. Events can originate from multiple
sources including timers, databases, message queues, or websites like Slack.

OpenWhisk consists of multiple components under the hood and all the com-
ponents are packaged inside their individual docker containers when OpenWhisk
is deployed [6]. Each function invocation is translated into an HTTP request to
the Nginx server [35]. The Nginx server is a single point of entry and its main
purpose is to implement the support for the HTTPS secure web protocol. On
receiving a request, the Nginx server forwards it to the controller where the
controller is responsible for authenticating and authorizing the requests. The
controller keeps track of the availability of the invokers, i.e., the workers that run
the code and chooses one of them for the invocation. The controller publishes the
messages to Kafka addressed at a chosen invoker and once the message delivery
is confirmed by the invoker, an HTTP request is sent back to the user with an
ActivationId, which can be used for retrieving the results of this function call.
Invokers set up a new docker container for each action, inject the code into them,
execute the code, obtain the results, and then destroy it. These containers are run
inside Kubernetes pods. There can be an invoker per Kubernetes worker node or
an invoker can be responsible for managing multiple Kubernetes worker nodes.
Functions can also be chained together into sequences where chained functions
use the output of the preceding function as input.

2.2.2 Google Cloud Functions (GCF)

Google Cloud Functions is a serverless execution environment for building and
connecting services in a cloud-based application [2]. With Google Cloud Functions,
developers do not need to provision any infrastructure or worry about managing
any servers, the whole environment including infrastructure, operating systems,
and runtime environments are managed by Google. Currently, Cloud Functions
supports JavaScript, Python 3, Go, and Java runtimes. Cloud Functions are
simple, single-purpose functions that are attached to events emitted from the
cloud infrastructure and services. The function is triggered when an event being
watched is fired. These events can be things like changes in a database, files added
to a storage system, or a new virtual machine instance is created. A response to



6 Jindal et al.

an event is created using a trigger which can then be attached to a function to
capture and act on events.

Each Cloud Function runs in its own isolated secure execution context, scales
automatically, and has a lifecycle independent from other functions [17]. Cloud
Functions handles incoming requests by assigning them to instances of function.
Depending on the volume of requests, as well as the number of existing function
instances, Cloud Functions may assign a request to an existing instance or create
a new one. Each instance of a function handles only one concurrent request at a
time. Thus the original request can use the full amount of resources (CPU and
memory) that you requested. In cases where inbound request volume exceeds
the number of existing instances, Cloud Functions start multiple new instances
to handle requests. This automatic scaling behavior allows Cloud Functions to
handle many requests in parallel, each using a different instance of the function.

3 Methodology

For understanding the performance differences between the DevOps and NoOps
deployment strategies, we consider a range of benchmarks. These benchmarks
are evaluated for both the deployment strategies using two different methods
in each case. In this section, we first present the details about the benchmarks
used for evaluating the deployment strategies and then describe the four different
deployments (Kubernetes hosted by Google Kubernetes Engine and self-hosted
Kubernetes cluster for DevOps, and OpenWhisk based functions deployment and
Google Cloud functions for NoOps) methods used in this work. We also present
the load testing infrastructure and details used for the evaluation in this section.

3.1 Benchmarks

We have considered a microservices application matching with the real world
applications along with 3 function benchmarks which include compute-intensive,
simple API endpoint, and image processing functions for evaluating the deploy-
ment strategies. Below subsections present the details about the microservices
application and the benchmarks.

3.1.1 Cinema microservices application

For demonstrating the performance differences between deployment of an applica-
tion using the DevOps methodology (microservices-based deployment) and NoOps
methodology (function-based deployment), we use an opensource microservices
application: cinema3, which contains movies information, show timings of the
movies, users information, and movie bookings made by the user. The overall
architecture, its services, interaction between them, and the API endpoints in
each of the services are shown in Fig. 1. All the data required by each service is
stored inside the Mongo database. The application is developed in Python and
consists of the following four services:

3 https://github.com/umermansoor/microservices



From DevOps to NoOps : Is it Worth it? 7

Fig. 1: Overall architecture of the microservices cinema application along with
the interaction between its services and the API endpoints supported by each of
its services.

– Movies: This service is responsible for accessing the movie’s information
(movie title, director, and rating) stored in the ”movies” collection of Mon-
goDB. It has two main API endpoints, 1) /movies to return all the movies
information as JSON, and 2) /movies/movieid to return a movie information
based on the specified movieid parameter.

– Showtimes: Movies show timings are managed by this service and are
stored in the ”showtimes” collection of MongoDB. It also has two main API
endpoints, 1) /showtimes to return all the shows information for all the
dates as JSON, and 2) /showtimes/date to return movie shows information
for the specified date.

– Bookings: It manages the movie shows booked by the users and stores
them into the ”bookings” collection of MongoDB. It also has two main API
endpoints, 1) /bookings to return all the bookings made by all the users as
JSON, and 2) /bookings/username to return the movie bookings made by
a particular user.

– Users: It manages the user information (full name, and address) stored in
the ”users” collection of MongoDB. It has three main endpoints: 1)/users
to return all the users information as JSON, 2) /users/username to re-
turn user information based on the specified username parameter and 3)
/users/booking/username to return the movie bookings information made
by the user for the specified username; here the service first queries the
Bookings service to provide the movie reservations made by the user and then
based on that information it queries the Movies service to get the movies
information and return its JSON back to the user.

Additionally, for testing the NoOps deployment, the application services are
decomposed into different functions. Each of the API endpoints is converted into



8 Jindal et al.

Table 1: Overview of the API endpoints, microservices containers, their ports and
serverless functions in cinema-application and used in this work for evaluation.

Service API endpoint
Microservices
(container:port)

Serverless
(function)

Movies
/

movies:5001
movies-base

/movies movies-all
/movies/movieid movies-id

Bookings
/

bookings:5003
bookings-base

/bookings bookings-all
/bookings/username bookings-username

Showtimes
/

showtimes:5002
showtimes-base

/showtimes showtimes-all
/showtimes/date showtimes-date

Users

/

users:5000

users-base
/users users-all
/users/username users-id
/users/booking/username users-booking

a new function and therefore in total, there are 13 functions and 4 microservices.
Summary of each of these functions and microservices is shown in the Table 1.

3.1.2 Functions

To investigate further the performance differences of each deployment strategy, we
used a subset of the benchmarks provided with the FaaSProfiler [40] and modified
them for our use case. Furthermore, we developed microservices implementations
of the chosen functions to enable their execution on the Kubernetes engine. The
OpenWhisk action container generally includes code for the function along with
its language runtime. OpenWhisk processes the incoming HTTP requests for
the function invocation with any number of arguments and sends the results
back to the user or caller. For most of the functions, we have used the default
runtime environment provided by OpenWhisk depending on the language that
the function is written in. If a function uses some extra packages which are not
part of their default language runtimes, we created a Docker runtime for it based
on their default docker runtime. While on google cloud functions the package
requirements along with the code are specified. They automatically create a
runtime environment based on it.

The functions used as part of this work are summarized in the Table 2 along
with their description and language runtimes. The nodeinfo function exposes an
HTTP endpoint and provides the user with basic information about the system
such as hostname, underlying architecture, number of CPUs, etc. We utilize
this function to test the general performance of each strategy and get an overall
idea of their performance on a basic web application. The compute-intensive
primes-python function is used for comparing their performances on compute-
intensive applications and study the scalability aspects. Finally, for demonstrating



From DevOps to NoOps : Is it Worth it? 9

Table 2: List of functions we developed or modified for demonstrating performance
differences of each deployment strategy.
Function Name Description Language runtime

nodeinfo
Gives basic characteristics of node Node.js
like CPU count, architecture, uptime.

primes-python Calculates prime numbers till 10000000. Python3

image-processing
Reads an image from object storage

Python3(here google object storage) and performs
basic operations

the access latency each strategy adds up when accessing an object (in our work
an image) stored on google cloud storage image-processing function is used
where after getting the image basic operations like flipping, rotating, conversion
to grayscale, and resize are performed.

3.2 Deployment Strategies

The above-presented application and function benchmarks are deployed using the
two strategies: DevOps and NoOps. DevOps deployment is achieved by deploying
the microservices on a Kubernetes cluster and configuring the scaling and other
parameters manually, whereas NoOps deployment is achieved by deploying the
functions (of the applications and function benchmarks) on a FaaS platform. In
this work, we have used our self hosted OpenWhisk platform and Google Cloud
Functions as FaaS platforms. Additionally, we have hosted the mongo database
externally therefore it remains common to all the methods along with the google
storage bucket for the image-processing function.

3.2.1 DevOps

The DevOps deployment strategy is achieved by deploying the microservices on
a Kubernetes cluster with a manual configuration of the scaling parameters. In
this work, this is achieved using two methods:

1. Google Cloud Platform hosted Kubernetes Engine (devops-gcp-
hosted-kubernetes): In this deployment method, a Google Kubernetes
Engine (GKE) cluster is created with three nodes each with a configuration of
4 vCPU and 16GB of memory. The Autoscaling of nodes is not enabled. Once
the cluster is created then each of the microservices of the application and
the converted microservices of the functions are deployed on it. Additionally,
each of the microservices are exposed externally using a Load Balancer.
Also, horizontal pod autoscaling is enabled for each of the microservices as
well with the CPU utilization threshold set to 80%, and minimum replicas
to 1 and maximum as 5. The overall deployment architecture is shown in
Fig. 2. Clients through the command-line interface (CLI) or REST APIs



10 Jindal et al.

Fig. 2: Overall architecture of DevOps-Deployment model along with the inter-
action between its components using Kubernetes as the underneath container
orchestration. The Kubernetes engine is created using the Google Kubernetes
Engine (GKE) on Google Compute Platform (GCP).

send requests to the external addresses of the exposed microservices and get
a response in return. Each of the microservices of the application can access
the externally hosted mongo database and google storage bucket.

2. Self-hosted Kubernetes Engine (devops-self-hosted-kubernetes): In
this deployment method, instead of using the Kubernetes engine hosted by
GKE, we created our own using the kubeadm4 tool with three nodes each
with the same configuration as the previous method (4 vCPU and 16GB
memory). The cluster has three nodes with one master and two worker nodes
but to have the same configuration as the one hosted by GKE we tainted
the master node as well so as to allow the pods to be scheduled on it. Other
configurations: deployment of the services, exposing them externally, and
enabling autoscaling were done in a similar manner as the above method.
Each of the service here also can access the externally hosted mongo database
and google storage bucket. The overall deployment architecture is similar to
the one shown in Fig. 2.

3.2.2 NoOps

The NoOps deployment strategy is achieved by deploying the functions on a FaaS
platform. Functions can then be invoked by a user’s HTTP request or by another
type of event created within the FaaS platform. The FaaS platform is responsible
for providing resources for function invocations and performs automatic scaling.
In this work, we have used two FaaS platforms for the evaluation:

1. OpenWhisk (noops-openwhisk): We started an OpenWhisk platform
on top of a Kubernetes cluster hosted using Google Kubernetes Engine
(GKE) with three nodes each with a configuration of 4 vCPU and 16GB

4 https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/create-
cluster-kubeadm/



From DevOps to NoOps : Is it Worth it? 11

Fig. 3: Overall architecture of NoOps-Deployment model using OpenWhisk with
Kubernetes as its container factory. The Kubernetes engine is created using the
Google Kubernetes Engine (GKE) on Google Compute Platform (GCP).

of memory. Additionally, we increased the default limits on the number of
concurrent invocations and invocations per minute which can be served in
OpenWhisk to 99999, and the memory allocated to the invoker is set to 2048

MiB. Once the OpenWhisk is deployed, then the wsk command-line interface
is used for deploying the functions onto the OpenWhisk. Each function is
allocated memory of 256MB. The overall deployment architecture is shown
in Fig. 3. Clients through the command-line interface (CLI) or REST APIs
send function invocation requests to the exposed OpenWhsik Nginx external
address and get responses in return.

2. Google Cloud Functions (nops-google-cloud-functions): In this de-
ployment method, instead of using the self-hosted FaaS platform, we have
used the Google Cloud Function for deploying the functions. As part of it,
we only specified the function runtime and the python code of the functions.
Google Cloud automatically handles the operational infrastructure. Each
function is allocated memory of 256MB along with Python 3.7 as the function
runtime and used HTTP as the trigger type. Each of the function here is
exposed externally and also access the externally hosted mongo database and
google storage bucket. The overall deployment architecture is shown in the
Fig. 4.

3.3 Load Test Settings and Infrastructure

Our evaluation strategy is implemented via a load testing tool - k6 [3]. k6 is a
developer-centric open-source load and performance regression testing tool for
testing the performance of the cloud-native backend infrastructure, including
APIs, microservices, functions, containers, and websites. k6 generates different
patterns of the user workload to the deployed system. k6 uses a script for running
the tests where the HTTP(s) endpoint along with the request parameters are
specified. HTTP(s) endpoint represents the deployed microservice or function



12 Jindal et al.

Fig. 4: Overall architecture of NoOps-Deployment model using Google Cloud
Functions on Google Cloud Platform (GCP).

endpoint. Two of the other k6 parameters which are configured as part of each
test are:

– Virtual Users (VUs): Virtual Users (VUs) are the entities in k6 that
execute the test and make HTTP(s) or websocket requests. VUs are concurrent
and will continuously iterate through the request endpoint until the test ends.

– Duration: A string specifying the total duration a test will run. During this
time each VU will execute the script in a loop.

The number of requests per second generated by k6 depends on the number of
VUs and the time taken by each request to complete. For example, if there are 10
VUs with total test duration set to 10 minutes and each request from a VU took
30 seconds to complete, then from each VU, there will be 2 requests per minute
and 20 requests per minute from 10 VUs with a total of roughly 200 requests
completed in the whole duration.

k6 is deployed on the Google Compute Platform and the testing results from
k6 are ingested into the InfluxDB5, which is an open-source time-series database.
Additionally, Grafana6, an open-source analytic & monitoring solution, visualizes
the queried data from the InfluxDB and presents it in real-time in a user-defined
dashboard style.

The performance for each deployed strategy is evaluated by calculating the
HTTP-request-duration (90-percentile), and the number of total requests served
successfully. The response time for a HTTP request below which 90% of the
response time values lie is called the 90-percentile (P90) response time, which
means 90 percent of the requests are processed in a 90-percentile response time
or less. This metric is important from the SLA point of view, where one wants
to have most of the requests (90% in this case) completed before a certain time.
We have evaluated each of the DevOps and NoOps strategies through different
microservices and functions API endpoints across linearly increasing (continuously
increasing) and random (random number of requests) user workload patterns.

5 https://docs.influxdata.com/influxdb/v1.7/
6 https://grafana.com/docs/grafana/latest/



From DevOps to NoOps : Is it Worth it? 13

Each test of an API endpoint is executed for 30 minutes. The total duration for
which the metrics data is collected is set to 31 minutes and the sampling rate is
set to 10 seconds, i.e, metrics values are aggregated for 10 seconds. The term
unit time refers to the sampling interval in Section 4.

4 Results

To compare the performance of both DevOps and NoOps strategies, we focused
on the 90-percentile response time of requests along with the number of requests
served. The x-axis for each of the graph represents the unit time duration (each
point corresponds to aggregated value over 10 seconds). In the section, we present
our findings from different tests across different deployment strategies.

4.1 Cinema application

As part of this application, we only show the results from 2 API endpoints:
1) /movies, and 2) /users/booking/username for both the workload patterns,
2 deployment strategies and their 2 ways of achieving it. The rest of the API
endpoints in this application are similar to /movies and hence are not presented.

4.1.1 /movies API Endpoint

The /movies API endpoint which is used to get all the movies stored in the
Mongo database is used for demonstrating the evaluation. Fig. 5 shows the
comparison results for this API endpoint for different deployment strategies along
with two different methods by which these two can be achieved on two workload
patterns for two metrics: number of requests served and P90 response time.
Overall DevOps strategy compared to NoOps showcased the best performance
results. devops-gcp-hosted-kubernetes along with devops-self-hosted-kubernetes
achieved almost the similar performance on both types of workloads showcasing
approximately a response time of 4.1ms and average number of requests served
per second as 13.65 on linearly increasing workload and 3.77ms on random
workload pattern with serving 9.98 number of requests per second. However, in
case of the NoOps strategy, noops-openWhisk showcased the worst performance
with the P90 response time of 1322ms for linearly increasing workload and 780ms

on random workload pattern. Also, noops-google-cloud-functions compared to
DevOps methods has a huge performance drop but is better than the noops-
openWhisk-functions showcasing approximately a response time of 344.74ms and
average number of requests served per second as 10.52 on linearly increasing
workload, and 339.94ms on random workload pattern with serving 7.69 number
of requests per second.

The high requests response times in the case of the NoOps strategy at
the beginning of each test is due to the cold-start[] problem but afterward, it
becomes stable. The performance drop in noops-openWhisk-functions compared
to noops-google-cloud-functions can be attributed to the no availability of the



14 Jindal et al.

Fig. 5: /movies API endpoint performance comparison results for different de-
ployment strategies along with two different methods by which these two can be
achieved on two different workload patterns for two metrics: number of requests
served and P90 response time.

resources underneath as virtual machines scaling was not enabled which might
be possible in google cloud functions. Furthermore, finding optimal configuration
parameters for each workload is required. One potential explanation of the huge
performance difference between NoOps and DevOps strategies can be due to the
big virtualization stack (FaaS platform) added inside NoOps for decreasing the
operational tasks, which does not exists in DevOps.

4.1.2 /users/bookings API Endpoint

/users/booking/username API endpoint returns the movie booking information
made by the user. This service is querying two other services. It takes username
as the parameter and first queries the /bookings/username API endpoint to get
the movie reservations made by the user and then based on that information it
queries the /movies/movieid service to get the movies information and return its
JSON to the user. Fig. 6 shows the comparison results for this API endpoint for
different deployment strategies along with two different methods by which these
two can be achieved on two workload patterns. Overall as in the previous result,
DevOps strategy compared to NoOps showcased the best performance results.

Although devops-gcp-hosted-kubernetes along with devops-self-hosted-kubernetes
achieved almost the similar performance on both types of workloads but opposite
to previous results they have a small difference of approximately 5ms (devops-
self-hosted-kubernetes taking a longer time to process requests) between the P90



From DevOps to NoOps : Is it Worth it? 15

Fig. 6: /users/bookings API endpoint performance comparison results for dif-
ferent deployment strategies along with two different methods by which these
two can be achieved on two different workload patterns for two metrics: number
of requests served and P90 response time.

response times for both the workloads while serving an almost equal number of
requests per second. On the other hand, noops-openWhisk-functions could not
handle the load after a certain number of requests and start taking more than a
minute to process the requests which can also be seen in the Fig. 6 (3rd row, 1st
column). However, noops-google-cloud-functions showcased better performance
than noops-openWhisk but again like previous results have a huge performance
overhead almost having 72x more P90 response time than Devops deployments.
This again can be attributed to the huge virtualization stack embedded into FaaS
platforms which increases up the response times of the requests. Also, NoOps
deployments have some initial high response times due to the cold start problem
and we can also in between the test noops-google-cloud-functions in the case of
linear workload a few spikes which most probably are due to the more function
replicas being getting created.

Summary results from both these APIs are showcased in the Tablet 3.

4.2 Primes-python function

This function calculates prime numbers till 10000000 and is used for demonstrat-
ing the behavior of each of the deployment strategies on a compute-intensive
microservice and function. We have converted this function to a microservice as
well using the Python Flask framework and deployed it to each of the Kubernetes
clusters in case of DevOps strategy. Fig. 7 shows the comparison results for this



16 Jindal et al.

Table 3: Summary results for cinema application showcasing HTTP P90 response
time and the average number of requests served successfully for all the deployments
methods in DevOps and NoOps at two user workload patterns.

API
Metrics P90 Response Time (ms) Avg. RPS

Type DGCP DSELF NOW NGCF DGCP DSELF NOW NGCF

/movies
Linear 4.15 4.20 1322.21 344.74 13.65 13.66 8.58 10.52

Random 3.77 3.77 780.7 339.94 9.98 9.98 7.29 7.69

/ub*
Linear 16.47 22.04 59999.12 1192.89 13.46 13.46 1.65 6.53

Random 16.44 20.90 60021.0 1167.74 9.78 9.85 2.080 4.83

function for different deployment strategies. It is clear from the figure that there is
no winner. In the case of DevOps strategy, devops-gcp-hosted-kubernetes initially
performed better by serving more number of requests with lesser response time
but with the increase in the number of requests the scaling of replicas kicks in and
the requests start to take longer time to respond. devops-self-hosted-kubernetes
is not able to cope up with the high requests and larger compute requirements
for the microservice, hence not able to scale properly and the number of requests
served is much lesser than the one completed by devops-gcp-hosted-kubernetes.
This points towards the load balancing and traffic re-distribution problem for
devops-gcp-hosted-kubernetes.

On the other hand, in the case of NoOps strategy, both of the deployments
suffer from the cold start problem and hence have longer response times in
the beginning. However, noops-google-cloud-functions shows a constant request
response time even with the increase in the number of requests for the rest of
the test duration in both the workload patterns. This indicates that the NoOps
deployment is more agile in terms of scalability and can provide a constant
response time baring the initial cold starts. Furthermore, with the increase in
time noops-google-cloud-functions was able to serve more number of requests
than any other deployment strategy for this compute-intensive function.

4.3 Image-processing function

For demonstrating the access latency each deployment strategy adds up when
accessing an object (in our work an image) stored on google cloud storage,
image-processing function is used. Google cloud storage is an object store
in buckets, which can store unstructured data such as photos, videos, log files,
backups, and container images. This function first gets an image from the bucket
and then basic operations like flipping, rotating, conversion to grayscale, and
resize are performed. Like the previous function, this function as well is converted
to microservice for deployment on the Kubernetes engine. Fig. 8 shows the
comparison results for this function for different deployment strategies. noops-
google-cloud-functions can serve a higher number of requests and at a lower



From DevOps to NoOps : Is it Worth it? 17

Fig. 7: primes-python function performance comparison results for different
deployment strategies on two different workload patterns for two metrics: number
of requests served and P90 response time.

response time for both the workloads therefore this deployment method is the
clear winner in this case. devops-gcp-hosted-kubernetes has varied response times
with the increase in the number of requests which again points towards the load
balancing and traffic re-distribution problem in it. In the case of devops-self-
hosted-kubernetes, the response time was continuously increasing with the number
of requests which also suggests the scaling issues in it, while the devops-gcp-hosted-
kubernetes can provide a constant requests response times even when the number
of requests is increasing. This again indicates that the NoOps deployment is more
agile in terms of scalability for this scenario as compared to DevOps. Therefore,
NoOps deployment can be used for the applications requiring the constant
requests latency. Though the DevOps strategy could also provide a constant
request latency but finding the optimal scaling and configuration parameters is
difficult and requires a prior load testing of the application.

4.4 Nodeinfo function

The nodeinfo function is a function to replicate a simple HTTP server endpoint.
We utilize this function to test the base performance of each strategy and get
an estimate of their performance on a basic web application. Fig. 9 shows the
comparison results for this function for different deployment strategies.

Overall DevOps strategy compared to NoOps showcased the best performance
results. devops-gcp-hosted-kubernetes along with devops-self-hosted-kubernetes
achieved almost the similar performance on both types of workloads showcasing
approximately a response time of 13ms and average number of requests served per



18 Jindal et al.

Fig. 8: image-processing function performance comparison results for different
deployment strategies on two different workload patterns for two metrics: number
of requests served and P90 response time.

second as 13.46 on linearly increasing workload and 12ms on random workload
pattern with serving 10 number of requests per second. However, there is a big
performance difference when the function is executed using NoOps strategies,
taking longer time to process the requests. From the initial P90 response times
of the requests for both the workloads, it can be inferred that noops-google-cloud-
functions has a big virtualization stack in comparison to the our own hosted noops-
openWhisk FaaS platform as the requests took times more time to complete when
executed on noops-google-cloud-functions than on noops-openWhisk. However,
when the number of requests increases, noops-google-cloud-functions is able to
cope up with scalability better than noops-openWhisk, which can also be seen from
the P90 response time of noops-google-cloud-functions as 66.9ms as compared to
789.42ms for noops-openWhisk in case of linear workload. Similar behaviour can
also be seen for the random workload pattern.

Summary results from both the above-discussed functions evaluations are
showcased in the Tablet 4 with the best ones highlighted.

5 Discussion

To summarize, we have drawn five points of discussion mentioned below.
NoOps deployment strategy which is based on serverless computing

suffers from the cold-start problem: From all the evaluations conducted
above, one can see that in the case of NoOps whenever a function is triggered
or invoked by a user request in the beginning there are always significant-high
response times as compared to later. This problem is referred to as the cold-start



From DevOps to NoOps : Is it Worth it? 19

Fig. 9: nodeinfo function performance comparison results for different deployment
strategies on two different workload patterns for two metrics: number of requests
served and P90 response time.

problem. Whenever a function is invoked, it is deployed in a newly-initiated
container and there is always a certain small period that a request needs to wait
until the container is ready to serve. This wait is usually taken by the container to
initialize the environment and pull the function source code which results in high
response times. There already have been many kinds of research to decrease the
cold start time like using pre-warmed containers [42], periodic warming consisting
of submitting dummy requests periodically to induce a cloud service provider to
keep containers warm [44] and pause containers [29]. Application developers need
to keep this in consideration when deploying an application and decide based on
the use case whether this deployment strategy is beneficial or not.

Google Cloud Functions can provide a stable latency baring the
initial cold-starts: From the evaluations conducted, it can be seen that even
when the workload is constantly increasing or randomly increasing and decreasing
Google Cloud Functions were able to provide a near-constant P90 response time
for the requests while the others could not. This can useful for the applications
which need constant latency. However, if the function instances are not invoked
for a certain time period then they will scale down to zero and the new requests
will suffer from a cold-start. To avoid that, a dummy application can be created
which will just send dummy requests to the functions for keeping them always
warm.

DevOps deployment strategy outperforms when fetching simple
web-based and database query requests: For the API calls where the re-
quests are with the simple payload and invoked repetitively having the static or
small size response then they should leverage a DevOps deployment due to high



20 Jindal et al.

Table 4: Summary results for function benchmarks showcasing HTTP P90 re-
sponse time and the average number of requests served successfully for all the
deployments methods in DevOps and NoOps at two user workload patterns.

Function
Metrics P90 Response Time (ms) Avg. RPS

Type DGCP DSELF NOW NGCF DGCP DSELF NOW NGCF

primes
Linear 26417.4 59999.2 15810 16810.8 1.13 0.38 1.72 0.84

Random 21062.6 59999.12 8590.0 16299.5 1.06 0.32 1.66 0.65

imageP*
Linear 27694.4 29231.9 23650.1 10429.8 1.14 0.79 0.951 1.38

Random 15710.0 21314.9 17570 10123.1 1.05 0.79 0.96 1.15

nodeinfo
Linear 2.61 2.92 789.42 66.9 13.68 13.67 11.29 13.24

Random 2.58 2.64 260.45 72.7 9.99 9.99 9.19 9.66

performance, cost advantages and no cold-start problem. In the evaluations, we
can see the decrements in P90 response times to almost 72%. NoOps deployment
has some minimum overhead due to either the virtualization stack or the different
involved components which is much more than what these usecases need as a
result for such cases DevOps deployment methods should be preferred.

DevOps deployment strategy suffers from the load balancing and
traffic re-distribution problem: Despite the cold start problem in the NoOps
deployment, it performed stably after the initial period. In contrast, microservices
deployment had a high peak of duration scattered randomly during different tests.
One potential explanation is that these are due to the scaling out or scaling in of
the pods triggered by horizontal pod autoscaling which resulted in the increase
in the response time. If one needs a stable latency over the whole time, then one
could choose deployment using NoOps deployment method.

NoOps deployment is more agile in terms of scalability: As we com-
pare the scalability and agility of both the deployments, NoOps is better than
DevOps. Since in the DevOps deployment, microservices starts to auto-scale only
after the system has reached the defined criteria for at least one minute, there is
always a delay of responsiveness to re-balance the current workload. As a result,
there is an increase in response time with the increasing workload, then it drops
after the new containers have been launched. Furthermore, if the underneath
resources are not scaled than the requests will start to timeout as was in our
evaluations. The granularity of the monitoring set can also limit the agility of
the microservices scalability which is not the case with the NoOps deployment
method. However, this disadvantage can be resolved by configuring a proper
caching mechanism to store repetitive content but the user has to deal with more
than what is required.



From DevOps to NoOps : Is it Worth it? 21

6 RELATED WORK

We present here the related work in threefolds, firstly, on the performance evalu-
ation of DevOps based microservices deployment, secondly on the performance
evaluation of NoOps based serverless deployment and lastly on the architectural
decisions on selecting DevOps or NoOps deployment.

In [8], they introduced a four-step approach for the quantitative assessment
of microservice architecture deployment alternatives. They found that in auto-
scaling cloud environments, careful performance engineering activities should be
executed before additional resources are added to the architecture deployment
configuration otherwise can result in significant performance degradation. In [4],
three microservices design patterns practiced in the software industry are evalu-
ated from the aspects of query response time, efficient hardware usage, hosting
costs, and packet loss rate. They concluded that there is no single microservices
pattern that is better than the others. Each design pattern performs better in
different scenarios. Casalicchio and Perciballi [12] analyze the effect of using
relative and absolute metrics to assess the performance of autoscaling. They
have deduced that for CPU intensive workloads, the use of absolute metrics can
result in better scaling decisions. Jindal et al. [22] addressed the performance
modeling of microservices by evaluation of a microservices web application. They
identified a microservice’s capacity in terms of the number of requests to find the
appropriate resources needed for the microservices such that, the system would
not violate the performance (response time, latency) requirements. Kozhirbayev
and Sinnott [24] present the performance evaluation of microservice architectures
in a cloud environment using different container solutions. They also reported on
the experimental designs and the performance benchmarks used as part of this
performance assessment.

NoOps based on serverless computing topic has been researched recently to
a great extent [27,14,10,23]. Baldini et al. [10] presents the general features of
serverless platforms and discuss open research problems in it. Lynn et al. [28]
discuss the feature analysis of enterprise based serverless platforms, including AWS
Lambda, Microsoft Azure Functions, Google Cloud Functions, and OpenWhisk.
Lee et al. [26] evaluated the performance of public serverless platforms for
CPU, memory, and disk-intensive functions. They concluded that AWS Lambda
outperforms other public cloud solutions. Similarly, Mohanty et al. [31] compared
the performance of open-source serverless platforms Kubeless, OpenFaaS, and
OpenWhisk. They evaluated the performance of each in terms of the response time
and success ratio for function when deployed in a Kubernetes cluster. Shillaker [41]
evaluates the response latency on OpenWhisk at different levels of throughput
and concurrent functions. They proposed a way for improving startup time in
serverless frameworks by replacing containers with a new isolation mechanism in
the runtime itself. Pinto et al. [34] showcased the use of serverless in the field of
IoT by dynamically allocating the functions on the IoT devices. Furthermore,
researchers have identified the limitations of current serverless platforms, such as
no control over specifying additional hardware resources like the required number
of CPUs, GPUs, or other types of accelerators for the functions [19,9].



22 Jindal et al.

With the rise of NoOps based on serverless computing, DevOps based on
microservices architecture is not the only choice when developing an application.
There are debates about architecting decisions when it comes to choosing between
these two. Jambunathan et al. [20] elaborated on the aspects of architecture deci-
sions on microservices and serverless. From the service deployment’s perspective,
serverless has infrastructure restrictions that need native cloud service support
and must be hosted by cloud service providers. In contrast, a microservices archi-
tecture could deploy on either the private data center or public cloud. However,
the benefits of auto-scaling without considering complex server configuration is a
deployment advantage on serverless than microservices.

In our previous work [15], we have compared microservices to serverless using
AWS Lambda as the FaaS platform and a native cloud-native web application
from the aspects of scalability, reliability, cost, and latency. We showcased the
use cases where each of the deployment strategies can be used. But in this work,
we have extended it by using OpenWhisk and Google Cloud Functions as FaaS
platforms. Furthermore, we have added additional function benchmarks and
applications for concluding the decisions.

7 Conclusion

Based on the experimental evaluations for DevOps and NoOps deployments, it
can be concluded that no single type of deployment can fit all kinds of applications.
For example, a GET and POST request to API endpoints fetching a response
body by querying a database has a huge overhead in NoOps as compared to
DevOps. On the other side, compute-intensive functions invocations were well
served NoOps deployments due to its scaling agility as compared to DevOps
where the user has to find the optimal scaling parameters and can suffer from
latency in auto-scaling execution. Also, NoOps strategy provides immediate
scalability and prompt response when handling random traffic, by which it can
offer a constant latency.

In the end, this research derived a future research direction towards optimizing
the deployment in terms of cost, performance, and application domain by building
a hybrid deployment environment consisting of both the DevOps andNoOps
deployment strategies. A deployment strategy is selected dynamically based on
the workload pattern or load-balanced between the two.

8 Availability

The used applications, functions and the conducted evaluations are publicly avail-
able on GitHub under the link https://github.com/ansjin/devops to noops.git.

ACKNOWLEDGEMENTS

This work was supported by the funding of the German Federal Ministry of
Education and Research (BMBF) in the scope of the Software Campus program.

https://github.com/ansjin/devops_to_noops.git


From DevOps to NoOps : Is it Worth it? 23

Google Cloud credits were provided by the Google Cloud Platform research
credits. The authors also thank the anonymous reviewers whose comments helped
in improving this paper.

References

1. Aws lambda – pricing. https://aws.amazon.com/lambda/pricing/, (Accessed on
07/30/2020)

2. Cloud functions overview. https://cloud.google.com/functions/docs/

concepts/overview, (Accessed on 08/22/2020)

3. What is k6? https://k6.io/docs/, (Accessed on 07/28/2020)

4. Akbulut, A., Perros, H.G.: Performance analysis of microservice design patterns.
IEEE Internet Computing 23(6), 19–27 (2019)

5. Apache: Openwhisk cli (2017), https://github.com/apache/openwhisk/blob/

master/docs/cli.md#openwhisk-cli

6. Apache: Openwhisk documentation (2017), https://openwhisk.apache.org/

documentation.html

7. Architect: Project philosophy (2020), https://arc.codes/intro/philosophy, [On-
line; Accessed: 4-Feburary-2020]

8. Avritzer, A., Ferme, V., Janes, A., Russo, B., Schulz, H., van Hoorn, A.: A quantita-
tive approach for the assessment of microservice architecture deployment alternatives
by automated performance testing. In: Cuesta, C.E., Garlan, D., Pérez, J. (eds.)
Software Architecture. pp. 159–174. Springer International Publishing, Cham (2018)

9. Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S., Ishakian, V., Mitchell, N.,
Muthusamy, V., Rabbah, R., Slominski, A., et al.: Serverless computing: Current
trends and open problems. In: Research Advances in Cloud Computing, pp. 1–20.
Springer (2017)

10. Baldini, I., Castro, P.C., Chang, K.S., Cheng, P., Fink, S.J., Ishakian, V., Mitchell,
N., Muthusamy, V., Rabbah, R.M., Slominski, A., Suter, P.: Serverless computing:
Current trends and open problems. CoRR abs/1706.03178 (2017), http://arxiv.
org/abs/1706.03178

11. Bhojwani, R.: Design patterns for microservice-to-microservice communica-
tion - dzone microservices. https://dzone.com/articles/design-patterns-

for-microservice-communication (Dec 2018), https://dzone.com/articles/

design-patterns-for-microservice-communication

12. Casalicchio, E., Perciballi, V.: Auto-scaling of containers: The impact of relative
and absolute metrics. 2017 IEEE 2nd International Workshops on Foundations and
Applications of Self* Systems (FAS*W) pp. 207–214 (2017)

13. Di Francesco, P., Lago, P., Malavolta, I.: Migrating towards microser-
vice architectures: An industrial survey. In: 2018 IEEE International
Conference on Software Architecture (ICSA). pp. 29–2909 (April 2018).
https://doi.org/10.1109/ICSA.2018.00012

14. Eivy, A.: Be wary of the economics of ”serverless” cloud computing. IEEE Cloud
Computing 4, 6–12 (2017)

15. Fan., C., Jindal., A., Gerndt., M.: Microservices vs serverless: A performance com-
parison on a cloud-native web application. In: Proceedings of the 10th International
Conference on Cloud Computing and Services Science - Volume 1: CLOSER,. pp.
204–215. INSTICC, SciTePress (2020). https://doi.org/10.5220/0009792702040215

https://aws.amazon.com/lambda/pricing/
 https://cloud.google.com/functions/docs/concepts/overview
 https://cloud.google.com/functions/docs/concepts/overview
https://k6.io/docs/
https://github.com/apache/openwhisk/blob/master/docs/cli.md#openwhisk-cli
https://github.com/apache/openwhisk/blob/master/docs/cli.md#openwhisk-cli
https://openwhisk.apache.org/documentation.html
https://openwhisk.apache.org/documentation.html
https://arc.codes/intro/philosophy
http://arxiv.org/abs/1706.03178
http://arxiv.org/abs/1706.03178
https://dzone.com/articles/design-patterns-for-microservice-communication
https://dzone.com/articles/design-patterns-for-microservice-communication
https://dzone.com/articles/design-patterns-for-microservice-communication
https://dzone.com/articles/design-patterns-for-microservice-communication
https://doi.org/10.1109/ICSA.2018.00012
https://doi.org/10.5220/0009792702040215


24 Jindal et al.

16. Gancarz, R.: The economics of serverless computing: A real-world test.
https://techbeacon.com/enterprise-it/economics-serverless-computing-

real-world-test (2017), https://techbeacon.com/enterprise-it/economics-

serverless-computing-real-world-test, [Online; Accessed: 23-March-2020]

17. GoogleCloud: Cloud functions execution environment. https://cloud.google.com/
functions/docs/concepts/exec, (Accessed on 08/22/2020)

18. Handy, A.: Amazon introduces lambda, containers at aws re:invent. https:

//sdtimes.com/amazon/amazon-introduces-lambda-containers/ (2014), https:
//sdtimes.com/amazon/amazon-introduces-lambda-containers/, [Online; Ac-
cessed: 4-Feburary-2020]

19. Hendrickson, S., Sturdevant, S., Harter, T., Venkataramani, V., Arpaci-Dusseau,
A.C., Arpaci-Dusseau, R.H.: Serverless computation with openlambda. In: 8th
{USENIX} Workshop on Hot Topics in Cloud Computing (HotCloud 16) (2016)

20. Jambunathan, B., Yoganathan, K.: Architecture decision on using microservices
or serverless functions with containers. In: 2018 International Conference on Cur-
rent Trends towards Converging Technologies (ICCTCT). pp. 1–7 (March 2018).
https://doi.org/10.1109/ICCTCT.2018.8551035

21. Jamieson, F.: Losing the server? (2017), https://www.bcs.org/content-hub/

losing-the-server/

22. Jindal, A., Podolskiy, V., Gerndt, M.: Performance modeling for cloud microservice
applications. In: Proceedings of the 2019 ACM/SPEC International Conference
on Performance Engineering. p. 25–32. ICPE ’19, Association for Computing
Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3297663.3310309,
https://doi.org/10.1145/3297663.3310309

23. Jonas, E., Pu, Q., Venkataraman, S., Stoica, I., Recht, B.: Occupy the
cloud: Distributed computing for the 99Cloud Computing. p. 445–451.
SoCC ’17, Association for Computing Machinery, New York, NY, USA
(2017). https://doi.org/10.1145/3127479.3128601, https://doi.org/10.1145/

3127479.3128601

24. Kozhirbayev, Z., Sinnott, R.O.: A performance comparison of container-based
technologies for the cloud. Future Generation Computer Systems 68, 175 – 182
(2017). https://doi.org/https://doi.org/10.1016/j.future.2016.08.025, http://www.
sciencedirect.com/science/article/pii/S0167739X16303041

25. Lane, K.: Overview of the backend as a service (baas) space. API Evangelist (2015)

26. Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing en-
vironments. In: 2018 IEEE 11th International Conference on Cloud Computing
(CLOUD). pp. 442–450 (July 2018). https://doi.org/10.1109/CLOUD.2018.00062

27. Lloyd, W., Ramesh, S., Chinthalapati, S., Ly, L., Pallickara, S.: Serverless computing:
An investigation of factors influencing microservice performance. In: 2018 IEEE
International Conference on Cloud Engineering (IC2E). pp. 159–169 (April 2018).
https://doi.org/10.1109/IC2E.2018.00039

28. Lynn, T., Rosati, P., Lejeune, A., Emeakaroha, V.: A preliminary review of enter-
prise serverless cloud computing (function-as-a-service) platforms. In: 2017 IEEE
International Conference on Cloud Computing Technology and Science (CloudCom).
pp. 162–169 (Dec 2017). https://doi.org/10.1109/CloudCom.2017.15

29. Mohan, A., Sane, H., Doshi, K., Edupuganti, S., Nayak, N., Sukhomlinov, V.: Agile
cold starts for scalable serverless. In: Proceedings of the 11th USENIX Conference
on Hot Topics in Cloud Computing. p. 21. HotCloud’19, USENIX Association, USA
(2019)

https://techbeacon.com/enterprise-it/economics-serverless-computing-real-world-test
https://techbeacon.com/enterprise-it/economics-serverless-computing-real-world-test
https://techbeacon.com/enterprise-it/economics-serverless-computing-real-world-test
https://techbeacon.com/enterprise-it/economics-serverless-computing-real-world-test
 https://cloud.google.com/functions/docs/concepts/exec
 https://cloud.google.com/functions/docs/concepts/exec
https://sdtimes.com/amazon/amazon-introduces-lambda-containers/
https://sdtimes.com/amazon/amazon-introduces-lambda-containers/
https://sdtimes.com/amazon/amazon-introduces-lambda-containers/
https://sdtimes.com/amazon/amazon-introduces-lambda-containers/
https://doi.org/10.1109/ICCTCT.2018.8551035
https://www.bcs.org/content-hub/losing-the-server/
https://www.bcs.org/content-hub/losing-the-server/
https://doi.org/10.1145/3297663.3310309
https://doi.org/10.1145/3297663.3310309
https://doi.org/10.1145/3127479.3128601
https://doi.org/10.1145/3127479.3128601
https://doi.org/10.1145/3127479.3128601
https://doi.org/https://doi.org/10.1016/j.future.2016.08.025
http://www.sciencedirect.com/science/article/pii/S0167739X16303041
http://www.sciencedirect.com/science/article/pii/S0167739X16303041
https://doi.org/10.1109/CLOUD.2018.00062
https://doi.org/10.1109/IC2E.2018.00039
https://doi.org/10.1109/CloudCom.2017.15


From DevOps to NoOps : Is it Worth it? 25

30. Mohanty, S.K., Premsankar, G., di Francesco, M.: An evaluation of open source
serverless computing frameworks. In: 2018 IEEE International Conference on
Cloud Computing Technology and Science (CloudCom). pp. 115–120 (Dec 2018).
https://doi.org/10.1109/CloudCom2018.2018.00033

31. Mohanty, S.K., Premsankar, G., di Francesco, M.: An evaluation of open source
serverless computing frameworks. In: 2018 IEEE International Conference on
Cloud Computing Technology and Science (CloudCom). pp. 115–120 (Dec 2018).
https://doi.org/10.1109/CloudCom2018.2018.00033

32. Novoseltseva, E.: Benefits of microservices architecture implementation.
https://dzone.com/articles/benefits-amp-examples-of-microservices-

architectur (2017), https://dzone.com/articles/benefits-amp-examples-of-
microservices-architectur, [Online; Accessed: 23-March-2020]

33. Pierre-Louis, M.A.: Openwhisk: A quick tech preview. DeveloperWorks Open, IBM,
Feb 22, 7 (2016)

34. Pinto, D., Dias, J.P., Sereno Ferreira, H.: Dynamic allocation of server-
less functions in iot environments. In: 2018 IEEE 16th International Confer-
ence on Embedded and Ubiquitous Computing (EUC). pp. 1–8 (Oct 2018).
https://doi.org/10.1109/EUC.2018.00008

35. Reese, W.: Nginx: The high-performance web server and reverse proxy. Linux J.
2008(173) (Sep 2008)

36. Richardson, C.: Introduction to microservices. https://www.nginx.com/blog/

introduction-to-microservices/ (May 2015), https://www.nginx.com/blog/

introduction-to-microservices/, [Online; Accessed: 25-January-2020]
37. Richardson, C.: Microservices pattern: Microservice architecture pattern.

https://microservices.io/patterns/microservices.html (May 2019), https:
//microservices.io/patterns/microservices.html, [Online; Accessed: 28-
January-2020]

38. Schneider, T.: Achieving cloud scalability with microservices and devops in the
connected car domain. In: Software Engineering (2016)

39. Serverless: Documentation (2020), https://serverless.com/framework/docs/,
[Online; Accessed: 4-Feburary-2020]

40. Shahrad, M., Balkind, J., Wentzlaff, D.: Architectural implications of function-as-a-
service computing. In: Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture. pp. 1063–1075 (2019)

41. Shillaker, S., Pietzuch, P.R.: A provider-friendly serverless framework for latency-
critical applications (2018)

42. Thömmes, M.: Squeezing the milliseconds: How to make serverless platforms
blazing fast! https://medium.com/openwhisk/squeezing-the-milliseconds-

how-to-make-serverless-platforms-blazing-fast-aea0e9951bd0 (2017),
https://medium.com/openwhisk/squeezing-the-milliseconds-how-to-make-

serverless-platforms-blazing-fast-aea0e9951bd0, [Online; Accessed: 14-
Feburary-2020]

43. WG, C.S.: Cncf wg-serverless whitepaper v1. 0 (March 2018), https:

//gw.alipayobjects.com/os/basement_prod/24ec4498-71d4-4a60-b785-

fa530456c65b.pdf, [Online; Accessed: 15-July-2020]
44. Şamdan, E.: Dealing with cold starts in aws lambda. https://medium.com/

thundra/dealing-with-cold-starts-in-aws-lambda-a5e3aa8f532 (2018),
https://medium.com/thundra/dealing-with-cold-starts-in-aws-lambda-

a5e3aa8f532, [Online; Accessed: 14-Feburary-2020]

https://doi.org/10.1109/CloudCom2018.2018.00033
https://doi.org/10.1109/CloudCom2018.2018.00033
https://dzone.com/articles/benefits-amp-examples-of-microservices-architectur
https://dzone.com/articles/benefits-amp-examples-of-microservices-architectur
https://dzone.com/articles/benefits-amp-examples-of-microservices-architectur
https://dzone.com/articles/benefits-amp-examples-of-microservices-architectur
https://doi.org/10.1109/EUC.2018.00008
https://www.nginx.com/blog/introduction-to-microservices/
https://www.nginx.com/blog/introduction-to-microservices/
https://www.nginx.com/blog/introduction-to-microservices/
https://www.nginx.com/blog/introduction-to-microservices/
https://microservices.io/patterns/microservices.html
https://microservices.io/patterns/microservices.html
https://microservices.io/patterns/microservices.html
https://serverless.com/framework/docs/
https://medium.com/openwhisk/squeezing-the-milliseconds-how-to-make-serverless-platforms-blazing-fast-aea0e9951bd0
https://medium.com/openwhisk/squeezing-the-milliseconds-how-to-make-serverless-platforms-blazing-fast-aea0e9951bd0
https://medium.com/openwhisk/squeezing-the-milliseconds-how-to-make-serverless-platforms-blazing-fast-aea0e9951bd0
https://medium.com/openwhisk/squeezing-the-milliseconds-how-to-make-serverless-platforms-blazing-fast-aea0e9951bd0
https://gw.alipayobjects.com/os/basement_prod/24ec4498-71d4-4a60-b785-fa530456c65b.pdf
https://gw.alipayobjects.com/os/basement_prod/24ec4498-71d4-4a60-b785-fa530456c65b.pdf
https://gw.alipayobjects.com/os/basement_prod/24ec4498-71d4-4a60-b785-fa530456c65b.pdf
https://medium.com/thundra/dealing-with-cold-starts-in-aws-lambda-a5e3aa8f532
https://medium.com/thundra/dealing-with-cold-starts-in-aws-lambda-a5e3aa8f532
https://medium.com/thundra/dealing-with-cold-starts-in-aws-lambda-a5e3aa8f532
https://medium.com/thundra/dealing-with-cold-starts-in-aws-lambda-a5e3aa8f532

	From DevOps to NoOps : Is it Worth it?

