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Summary

Serverless computing has rapidly grown following the launch of Amazon’s Lambda
platform. Function-as-a-Service (FaaS) a key enabler of serverless computing allows
an application to be decomposed into simple, standalone functions that are executed
on a FaaS platform. The FaaS platform is responsible for deploying and facilitating
resources to the functions. Several of today’s cloud applications spread over hetero-
geneous connected computing resources and are highly dynamic in their structure
and resource requirements. However, FaaS platforms are limited to homogeneous
clusters and homogeneous functions and do not account for the data access behavior
of functions before scheduling.
We introduce an extension of FaaS to heterogeneous clusters and to support hetero-
geneous functions through a network of distributed heterogeneous target platforms
called Function Delivery Network (FDN). A target platform is a combination of
a cluster of homogeneous nodes and a FaaS platform on top of it. FDN provides
Function-Delivery-as-a-Service (FDaaS), delivering the function to the right target
platform. We showcase the opportunities such as varied target platform’s character-
istics, possibility of collaborative execution between multiple target platforms, and
localization of data that the FDN offers in fulfilling two objectives: Service Level
Objective (SLO) requirements and energy efficiency when scheduling functions by
evaluating over five distributed target platforms using the FDNInspector, a tool
developed by us for benchmarking distributed target platforms. Scheduling functions
on an edge target platform in our evaluation reduced the overall energy consumption
by 17x without violating the SLO requirements in comparison to scheduling on a
high-end target platform.
KEYWORDS:
cloud computing, edge computing, high performance computing, serverless computing, function delivery
network, function-as-a-service, heterogeneous platforms, heterogeneous faas

1 INTRODUCTION

Presently, there exists a multitude of resources for processing and data storage ranging from small, inexpensive devices with lim-
ited computing resources to modestly priced servers with mid-range resources to expensive high performance computers with
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extensive compute, storage, and network capabilities. These all combined form the computing continuum1. Many of today’s
applications are spread out over these heterogeneous connected computing continuum2. (1)Web applications, for instance, com-
binemobile devices, edge computers for content delivery, and servers to enable interaction and collaboration. (2) IoT applications
use micro-controllers, mini-computers, edge computers, and servers for delivering sensor measurements and controlling devices
in the physical world. (3) Large scale experiments gather big data sets that need to be preprocessed and aggregated, forwarded
to analytics functions, fed into compute-intensive simulations, and be visualized for the scientists. Many of these applications
are highly dynamic with respect to their structure as well as the workload2. Programming and deploying these applications is a
highly challenging task. This is due to the heterogeneity of the underlying hardware, varying compute and data access require-
ments across time and application components, as well as the dynamic structure of the applications due to agile programming
techniques combined with continuous delivery.
Significant progress has been made in the context of cloud computing based on the idea of severless computing since its

launch by Amazon as AWS Lambda in November 20143. Serverless computing is a cloud computing model that abstracts
server management and infrastructure decisions away from the users4. In this model, the allocation of resources is managed by
the cloud service provider rather than by the team of application developers and deployment managers, i.e., DevOps, thereby
increasing their productivity. Additionally, from the last couple of years there have been shift observed in the cloud native appli-
cations architecture from independently deployable microservices towards serverless architecture which is more decentralized
and distributed5.
Function-as-a-Service (FaaS) is a key enabler of serverless computing4. In FaaS, an application is decomposed into simple,

standalone functions that are uploaded to a FaaS platform for execution. These functions are stateless, i.e., the state is not kept
across function invocations. Functions can be invoked by a user’s HTTP request or by another type of event created within the
FaaS platform. The FaaS platform is responsible for deploying and facilitating resources to the application functions.
Currently, a significant number of open source and commercial FaaS platforms are available6. All of the large cloud providers

have FaaS platforms available based on a container orchestration platform such as Kubernetes. However, these platforms are
limited to homogeneous clusters of nodes as well as to homogeneous functions. These assumptions facilitate the scheduling of
functions invocations onto the available resources. Furthermore, FaaS platforms do not account for the data access behavior of
functions during scheduling7. Since the functions are stateless, state changes and lookups require frequent access to databases
that can lead latency in to data accesses.
In this article, we introduce an extension to the concept of FaaS as a programming interface for heterogeneous clusters and to

support heterogeneous functions with varying computational and data requirements. This extension is a network of distributed
heterogeneous target platforms called Function Delivery Network (FDN) analogous to Content Delivery Networks8. A target
platform is a combination of a cluster of homogeneous nodes and a FaaS platform on top of it. FDN provides Function Delivery
as a Service (FDaaS), delivering the function to the right target platform based on the required computational and data demand.
We target the integration of HPC clusters and distributed mini-computers (such as being used as edge devices) with the current
platforms running on homogeneous clusters of servers in the cloud. In contrast to the elastic resource management in the cloud,
HPC clusters are statically partitioned machines focusing on batch workloads. Space sharing is used to distribute the nodes
to long-running applications that have exclusive access for their entire lifetime. The batch scheduling algorithm decides on
the resource distribution to optimize the overall utilization of the system. Edge computers are currently used as a deployment
device for a single application. In the IoT Greengrass system of Amazon9, it is already possible to integrate edge devices with
cloud resources in an IoT platform and application Lambda functions running on it are deployed to the edge computers for
implementing computing on the edge. This approach is thus limited to single applications on the edge and a static distribution
of computation. The integration of edge systems for general FaaS applications will require an extension of the FaaS platform
across heterogeneous devices.
The automatic management of resources in the proposed serverless based FDN facilitates application development by shifting

the burden to the cloud platform. However, already existing challenges like the fast startup of containers, communication, and
latency of data accesses are further increased. The heterogeneity of the resources in the continuum is specifically challenging
for resource management. However, due to the heterogeneity of the FDN, it offers a wide range of opportunities for meeting
different objectives like SLO requirements and energy efficiency in unconventional ways. Towards this, we present an external
component of the FDN, FDNInspector, a tool for benchmarking different target platforms and show based on our experiments
the opportunities offered by FDN in meeting the two objectives: SLO requirements and energy efficiency. In summary, our main
contributions are presented as follows.
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1. We propose an extension to the concept of FaaS as a programming interface for the computing continuum called Function
Delivery Network (FDN). It should be noted that in this article we introduce the overall architecture of the FDN and
describe its components in detail but the development of the FDN is still underway and therefore its implementation
details are out of scope for this work.

2. We develop and present a tool called FDNInspector for evaluating distributed heterogeneous FaaS based target platforms.
This tool is one of the external components of the FDN and is used for benchmarking the target platforms. It also contains
the monitoring of the target platforms using Prometheus, which will be extended and reused as part of the FDN later.

3. We highlight various opportunities offered by the FDN in meeting the two objectives: SLO requirements and energy effi-
ciency when scheduling function invocations on five different target platforms by evaluating various function benchmarks
using the developed FDNInspector.

4. We present the performance evaluation results of target platforms for the introduced objectives and the opportunities
provided by the FDN in meeting them.

The rest of this article is organized as follows. Section 2 gives a brief overview of FaaS cloud model and the different FaaS
platforms used in this work. In Section 3, the Function Delivery Network (FDN) and its components are introduced. Section 4
describes our overall experimental system design and the tool FDNInspector. Different goals and the performance evaluation
results of the opportunities provided by the FDN in meeting those goals are presented in section 5. In Section 6 a few additional
opportunities provided by the FDN are discussed. In Section 7, we describe some of the previous works in this domain and in
section 8 we discuss the threats to validity. Finally, Section 9 concludes the paper and presents an outlook.

2 BACKGROUND

In this section, we first present an overview of the FaaS cloud model. Following this, we describe the architecture and high level
workflow of the three FaaS platforms used in this work.

2.1 FaaS Cloud Model
Function-as-a-Service (FaaS) provides an attractive cloud model since it facilitates application development in which the user
does not have to worry about the infrastructure management, but only about the code being deployed. The pricing is charged
based on the number of requests to the functions and the duration, the time it takes for the function code to execute10. The latter
varies according to the number of resources such as memory and CPU cores allocated to the function, and are automatically
adapted to deliver the best performance. Instead of developing application logic in the form of services and managing the
required resources, the application developer implements fine-grained functions connected in an event-driven application and
deploys them into the FaaS platform4. The platform is responsible for providing resources for function invocations and performs
automatic scaling depending on the workload. The functions can be closely integrated with other services, e.g., cloud databases,
authentication and authorization services, and messaging services. These services are called Backend-as-a-Service (BaaS). The
Cloud Native Computing Foundation (CNCF) divides serverless into FaaS and BaaS4. BaaS are the third-party services that
replace a subset of functionality in a function and allow the users to only focus on the application logic11. In FaaS, function
invocations are handled by using containers. Since functions are stateless, the state of the application is stored in databases.
In comparison to microservice applications, FaaS has three advantages (1) no continuously running services are required, (2)
functions are only charged when they are executed, and (3) the function abstraction increases the developer’s productivity.
One of the biggest differences between other forms of cloud models and the serverless model is scalability12. In serverless

computing, the application automatically scales up or down based on the resource usage (with scaling down to zero number of
instances as well) and DevOps do not have to specify any scaling parameters. The infrastructure of the cloud service provider
starts up ephemeral instances of each function on-demand. BaaS services are not set up to scale in this way unless the BaaS
provider also offers serverless computing and the developers build this into their applications.
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FIGURE 1 Openwhisk high level workflow15

2.2 FaaS Platforms
FaaS based functions can be invoked by a user’s HTTP request or by another type of event created within the FaaS platform.
The FaaS platform is responsible for providing resources for function invocations and performs automatic scaling. Currently a
significant number of open source and commercial FaaS platforms are available6. FaaS platforms implementations are based
on starting containers for function invocations on top of a container orchestration platform such as Kubernetes. Applications
are defined via a deployment specification that describes the functions, APIs, permissions, configurations, and events that make
up a serverless application. The specification can be given via a command-line or web interface, or by using some frameworks
like Serverless13 and Architect14. Updating of a deployment is also done through this deployment specification. All the updates
in the specification are instantly propagated after which either the containers are restarted or only some configuration files are
updated.

2.2.1 OpenWhisk
Apache OpenWhisk is a serverless open source cloud platform that was originally developed by a research group at IBM in
2015 and was released in December 2016. It was later donated to the Apache Software Foundation16. It powers IBM’s serverless
offering, IBM Cloud Functions and implements FaaS on top of Kubernetes as the container orchestration platform. Functions in
OpenWhisk are called actions and the execution of an action is called an invocation. Actions and rules can be created through
the command-line interface (CLI) (wsk17), user interface (UI), or SDK. Created actions can then be invoked either manually
through the same methods or by event triggers. Events can originate from multiple sources including timers, databases, message
queues, or websites like Slack or GitHub.
OpenWhisk consists of multiple components under the hood as shown in the Figure 1 and all the components are packaged

inside their individual docker containers when OpenWhisk is deployed15. Each function invocation is translated into an HTTP
request to the Nginx server18. The Nginx server is a single point of entry and its main purpose is to implement the support
for the HTTPS secure web protocol. On receiving a request, the Nginx server forwards it to the controller. The controller is
responsible for authenticating and authorizing the requests in coordination with CouchDB where all the user’s data and their
privilege levels are stored. The controller also has a load balancer which keeps track of the availability of the invokers, i.e., the
workers that run the code and chooses one of them for the invocation. Controller and invokers communicate through Kafka19, a
publish-subscribe messaging system. The controller publishes the messages to Kafka addressed at a chosen invoker and once the
message delivery is confirmed by the invoker, an HTTP request is sent back to the user with an ActivationId, which can be used
for retrieving the results of this function call. This processing is asynchronous, however synchronous processing is also available.
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FIGURE 2 OpenFaas high level workflow21.

It functions similarly to asynchronous processing, except in this case, the client will block until the action is completed and
will retrieve the results immediately. Invokers set up a new docker container for each action, inject the code into them, execute
the code, obtain the results, and then destroy it. These containers are run inside Kubernetes pods. There can be an invoker per
kubernetes worker node as shown in the Figure 1 or an invoker can be responsible for managing multiple kubernetes worker
nodes. Functions can also be chained together into sequences where chained functions use the output of the preceding function
as input. OpenWhisk supports running functions in languages: Python, Node.js, Scala, Java, Go, Ruby, Swift, PHP, Ballerina,
.NET and Rust20. Functions which are not using these languages can be created by providing a custom built docker runtime.

2.2.2 OpenFaaS
OpenFaaS is an another widely popular open source serverless cloud platform hosted by OpenFaaS Ltd21. Until March 2019, it
was developed by a team of full-time developers fromVMWare22. It also implements FaaS on top of Kubernetes as the container
orchestration platform. Functions in OpenFaaS can be written in any language, and unlike OpenWhisk, one does not have to
create custom runtimes to make it work. A pre-built docker image of the function can be supplied to it.
Similar to OpenWhisk, functions can be deployed through any interface to the OpenFaaS Gateway (CLI/UI/REST), either

manually or by setting up triggers. OpenFaaS Gateway is the single point of entry for all the requests. Figure 2 shows a high level
workflow of the interaction between the different components of OpenFaaS. From the gateway, CRUD (create, read, update,
delete) operations and invocations are forwarded to the faas-provider, i.e., the controller which translates OpenFaaS functionality
to a certain provider. faas-netes23 is an example of a faas-provider in OpenFaaS which enables Kubernetes for it. Because of
this transparency to Kubernetes, one can interact with OpenFaaS resources directly through kubectl, the command line interface
for Kubernetes. When a function is created, its code is pulled from the docker registry and executed inside a container. It
utilizes Prometheus and its AlertManager to continuously expose metrics. The AlertManager uses these metrics to determine
auto-scaling decisions and inform them to the OpenFaaS gateway which then scales the function replicas up or down. The
minimum (initial) and maximum replica count can be set at the time of deployment by adding a label to the function. When
using Kubernetes, the built-in Horizontal Pod Autoscaler (HPA) can also be used instead of AlertManager24. Scaling to zero
to recover idle resources is available in OpenFaaS, but is not turned on by default. Scaling down to zero replicas is also called
"idling" in OpenFaaS. The faas-idler, an external component is responsible for making the scaling down to zero decision25. It
monitors the built-in Prometheus metrics on a regular basis along with the inactivity_duration variable to determine if a
function should be scaled to zero or not. Only functions with a label of com.openfaas.scale.zero=true are scaled to zero,
all others are ignored. When using faas-netes as the provider, faas-idler is automatically deployed by default.
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OpenFaaS’s watchdog is responsible for starting and monitoring functions in OpenFaaS26. It provides a generic interface
between the outside environment and the function. The watchdog is a tiny Golang webserver which every function uses as their
docker ENTRYPOINT. It acts as the init process for function container. Once the function is invoked, the watchdog passes in the
HTTP request via stdin and reads a HTTP response via stdout and sends it back to user.
OpenFaaS enables long-running tasks or function invocations to run in the background through the use of NATS Streaming27.

This decouples the HTTP transaction between the caller and the function. The HTTP request is serialized to NATS Streaming
through the gateway as a "producer". The queue-worker acts as a subscriber and deserializes the HTTP request and uses it to
invoke the function directly. To fetch the results from an asynchronous call, the user can specify a callback url.

2.2.3 Google Cloud Functions (GCF)
Google Cloud Functions is a serverless execution environment for building and connecting services in a cloud-based application
offered by Google Compute Platform(GCP)28. With Google Cloud Functions, developers do not need to provision any infras-
tructure or worry about managing any servers, the whole environment including infrastructure, operating systems, and runtime
environments are managed by Google. Currently, Cloud Functions supports JavaScript, Python 3, Go, and Java runtimes. Cloud
Functions are simple, single-purpose functions that are attached to events emitted from the cloud infrastructure and services.
The function is triggered when an event being watched is execcuted. These events can be things like changes in a database, files
added to a storage system, or a new virtual machine instance is created. A response to an event is created using a trigger which
can then be attached to a function to capture and act on events. GCFs can either be deployed using the web interface or the
gcloud1 command line tool.
Each Cloud Function runs in its own isolated secure execution context, scales automatically, and has a lifecycle independent

from other functions29. Cloud Functions handles incoming requests by assigning them to instances of function. Depending on
the volume of requests, as well as the number of existing function instances, Cloud Functions may assign a request to an existing
instance or create a new one. Each instance of a function handles only one concurrent request at a time. Thus the original request
can use the full amount of resources (CPU and memory) that is requested. In cases where inbound request volume exceeds the
number of existing instances, Cloud Functions start multiple new instances to handle requests. This automatic scaling behavior
allows Cloud Functions to handle many requests in parallel, each using a different instance of the function.

3 FUNCTION DELIVERY NETWORK (FDN)

Serverless computing in the form of FaaS is extremely attractive to DevOps as they are no longer responsible for managing
infrastructure resources and autoscaling application components. FaaS provides automatic scaling for each function invocation
as a result of a trigger. These invocations are then automatically distributed across the available resources. Current FaaS plat-
forms are limited to clusters of homogeneous nodes. However, many cloud applications in the computing continuum require
heterogeneous resources for the execution. At a high level, heterogeneity in FaaS exists in two ways:

• One by using FaaS over heterogeneous clusters, clusters with different system architectures. For example, one cluster
consisting of VMs in the Cloud, and another cluster consisting of resource-constrained edge devices. Such a method has
an advantage of achieving higher application performance by placing the functions into the specific clusters depending
on their computational requirements, and could even be used for reduction in the overall energy consumption30.

• Second by using heterogeneous FaaS platforms. Due to resource constraints in edge devices not all serverless platforms
can run on them. In31 four open source serverless frameworks, namely, Kubeless, ApacheOpenWhisk, OpenFaaS, Knative
are evaluated on resource-constrained edge devices. Also, Pfandzelter et al.32 highlight the problem of running cloud
based FaaS platforms on the edge and introduce a new FaaS platform called tinyFaaS for edge environments. Therefore,
one cannot run a homogeneous FaaS platform over heterogeneous clusters.

In this article, a target platform is a combination of a homogeneous cluster and a FaaS platform on top of it. For extending the
serverless computing FaaS platform to heterogeneous clusters and to support heterogeneous functions with varying computa-
tional and data requirements we introduce a network of distributed target platforms called as Function Delivery Network (FDN)

1https://cloud.google.com/sdk/gcloud
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FIGURE 3 Overall architecture and high level workflow of the Function Delivery Network (FDN). The FDN combines several
target platforms (Cloud, Edge, HPC) via a joint Control Plane for the continuous deployment of applications into the Computing
Continuum. It analyzes application characteristics (Behavioral Modeling) and the FDN platform parameters (Monitoring) and
applies a distributed approach for function scheduling (Scheduler and Sidecars in the platforms). External tools, such as the
FDNinspector presented in this paper, allow to benchmark the FDN and tune its hyperparameters.

analogous to Content Delivery Networks distributing web content and media to a network of distributed resources to provide ser-
vice with the best quality of service (QoS). The FDN provides Function Delivery as a Service (FDaaS), delivering the function
to the right target platform based on the computational and data requirement.
When extending FaaS to target platforms, challenges like communication latencies, function scheduling, and data access

patterns are further increased. Deploying heterogeneous functions on these target platforms can make these challenges even
harder to solve33. However, the opportunities that the FDN offers such as varied target platform’s characteristics, possibility of
collaborative execution between multiple target platforms, and localization of data can help in achieving higher Service Level
Objective (SLO) matching, lower energy consumption and higher throughput for a mix of applications.
Extending FaaS to the continuum of resources requires scheduling functions and placing data onto the target platforms. This

requires more knowledge about the behavior of the application functions. The assumption of similar granularity does not hold
since applications will use functions with significantly different computational requirements. Furthermore, data will be stored
in different databases at different locations providing a non-uniform access latency. Although the functions are stateless, state
changes and look-ups require frequent access to databases. The data access behavior of functions is not taken into account by
the current platforms for scheduling34. Therefore, when scheduling function invocations both, the computational and the data
requirements have to be considered in an optimized manner benefiting from the distribution and the heterogeneity of the compute
and data resources.
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Integrating target platforms with different levels of computing power has the potential to improve overall application perfor-
mance. Different types of hardware may reduce the overall energy consumption by integrating IoT and other low-power target
platforms35. In the same way, high-performance computing target platformsmight add large amounts of computing power. Other
domains where heterogeneous FaaS platforms can be relevant are edge and fog computing. Both domains include several differ-
ent types of hardware nodes, sometimes with a huge difference in computing power (e.g. a smartphone and AWS36). Situations
like these arise the need for intelligent placement of computational tasks to fully exploit the benefits of edge and fog comput-
ing. In these domains, network links might vary vastly in terms of bandwidth sizes (e.g. Infiniband in datacenters and mobile
networking in cellphones)37. This improves the need for efficient scheduling of functions to reduce the overall latency for the
participants of the heterogeneous target platforms. Integrating specialized FaaS platforms which operate better on specific hard-
ware (e.g. an HPC cluster or a cluster of IoT devices) can leverage both dimensions of heterogeneity and can optimally exploit
the available resources.
Figure 3 outlines the overall architecture and high-level workflow of the proposed Function Delivery Network (FDN). The

user provides an application configuration specification which describes the functions, APIs, permissions, configurations, and
events. The specification can be given via a command-line or web interface, or by using some frameworks like Serverless13
and Architect14. The Deployment Generator annotates this file with the deployment configuration either based on the previous
knowledge captured in the Knowledge Base or based on the expert knowledge provided externally. This updated specification is
then passed to the FDN Control Plane. It manages function scheduling and data placement, monitors the overall infrastructure
and applications, and provides access control for authentication and authorization. The functions are scheduled to the target
platforms based on the specification. Various behavioral models are constructed during application execution by the Behavioral
Modeling component. Thesemodels are updated regularly in an online learningmanner as the data from the application functions
is collected. The runtime decisions of function scheduling and data placement done by the FDN Control Plane is based on these
models. Furthermore, the gathered historic application knowledge is used by external components for recommendations to the
user, or for offline tuning of the FDN itself. The FDNInspector (presented in Section 4.4) an external component of the FDN is
utilized for benchmarking the FDN . The following subsections describe each component of the FDN in more detail.

3.1 FDN Control Plane
This is the main component of the FDN and is responsible for managing the FDN. It’s responsibilities include access control
for authentication and authorization, monitoring across the different target platforms, and scheduling function invocations and
placement of data. The management of target platforms is done in a hierarchical manner, where the scheduling and placement
decisions concerning the target platforms are taken by the scheduler within this component, while the selection of the nodes
within the target is delegated to the Sidecar Controller component within each target platform. Both the control plane and the
local sidecar controller work in collaboration to the make final decision. The details regarding each sub-component of the FDN
control plane are presented below.

3.1.1 Access Control
Every individual computing platform requires some security measures for scheduling functions and collecting resource
utilization data from them. This component deals with these measures.

3.1.2 Monitoring
This component is responsible for gathering data related to platform, application, and function level metrics. For collecting a
wide variety of metrics, it interfaces and extends the existing monitoring of the FaaS platforms and the Kubernetes clusters, and
provides base data for the Scheduler and the Behavioral Modeling components. Prometheus being a well known monitoring
system will be used along with some added instrumentation for collecting heterogeneous monitoring data38. However, in this
work we have already built a monitoring system based on Prometheus as part of the FDNInspector (Section 4.4) to extract
different metrics for evaluation. This will be reused for the implementation of the FDN. Metrics are classified under three
categories: (i) User-Centric metrics, the metrics responsible at the user side, (ii) FaaS-Platform-Centric metrics, the metrics
from the FaaS platform, and (iii) Infrastructure-Centric metrics, the metrics from the host machines.

• User-Centric metrics: The response time for a HTTP request below which 90% of the response time values lie, is called
the 90-percentile (P90) response time, which means 90 percent of the requests are processed in 90-percentile response
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TABLE 1Monitoring metrics from three different layers.

User-Centric Metrics FaaS-Platform-Centric Metrics Infrastructure-Centric Metrics

Requests 90-percentile (P90) response time Number of function replicas Total number of cores
Number of requests served Number of function invocations Total Memory

Number of cold starts CPU utilization of cluster
Function execution time Memory utilization of cluster
Memory allocated to the function Disk I/O of cluster

time or less. This metric is important from the SLA point of view, where one wants to have most of the requests (90% in
this case) completed before a certain time. This metric and the number of requests served per unit time are calculated as
part of this class of metrics.

• Platform-Centricmetrics: Number of function invocations resulted from the received requests, number of replicas for the
function creation created to load balance those invocations, number of invocations resulting in cold starts, and execution
time of the function (excluding the startup latency) alongwith thememory allocated to each function instance is considered
in this class of metrics.

• Infrastructure-Centric metrics: In this case, the amount and usage over time of static resources such as number of cores,
memory inside individual nodes of a target platform are considered when functions are scheduled on it.

The summary of these considered metrics from the three different categories are shown in Table 1. For all these metrics, the
data is collected per unit time.

Tracing of events (allocation of resources, start of container, deletion of container, etc.) will be added in the future, since
these events are helpful for building models for anomaly detection and finding the root cause analysis. The monitoring solution
must be carefully designed to reduce application jitter and performance degradation. All the collected monitoring data are stored
inside the database and are used by the FDN’s Behavioural Modeling (Section 3.3) component for building various models.

3.1.3 Scheduler
It is responsible for (1) scheduling or delivering the function and (2) placement of the data to an appropriate target platform based
on the compute and data requirements of the function. Apart from function scheduling and data placement, this component also
keeps track of the high availability of the applications. For taking decisions, this component uses the data from the Monitoring
(Section 3.1.2) and the Behavioural Modeling (Section 3.3) components, and applies a hierarchical decision making approach.
In this approach, the scheduling and placement decisions with respect to the target platform are taken by the scheduler, while
the selection of the resource within the target platform is delegated to the Sidecar Controller component. The three important
functionalities of the scheduler are described below:
Function Scheduling
The Scheduler is responsible for scheduling the function to the right target platform based on a distributed scheduling algorithm.
This algorithm uses the function’s behavioral models, the target platforms configuration and the current state of the FDN for
making a decision. Additionally, it investigates the trade-offs between staging the data for individual function invocations or
long term migration to a specific server within the target platform for faster data access, and then selects the best suitable option.
Data Placement
Data Placement functionality includes tools and methods for adaptive data management. It enables migration of data between
the target platforms to exploit data affinity. Targets of the adaptive data management are mostly the NoSQL databases and object
storage platforms such as MinIO39, that are used for storing the state of the functions and data files. It includes following three
main methods for data management:
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1. Distributed Data Caching: It is used for supporting data affinity. It acts as an intermediate layer between functions and the
used storage platform (databases or object storage). Written data as well as the accessed data will be cached and, means will
be provided to proactively migrate or replicate data to the selected target platform for future function invocations.

2. File Staging and Migration: It is applied when the data to be used is stored in files and is accessed by compute intensive
functions. Such function invocations are candidates for being scheduled to a target platform of HPC nodes. Ideally staging is
not done on-demand but proactively, and scheduling decisions might even lead to a migration of files for reducing the staging
overhead in case of repetitive execution of those functions.

3. Data Access Instrumentation: To enable distributed data caching for NoSQL databases as well as file staging, database and
file accesses in the functions have to be redirected to the data management layer. This method automatically instruments the
deployment specification which will be as transparent as possible for the application developer. The general approach for this
method is based on automatically intercepting the REST call and file system functions through library interposition.
Function scheduling and data placement decision methods works in collaboration with each other by taking into account

multiple objectives like compute and storage requirements, communication between functions, and cost.
Fault Tolerance
Methods for setting up a fault tolerant environment where the failing of a specific device/node in a target platform will lead to a
restart or continuation at another device/node in the same or different target platform such that the system continues to operate
is done as part of this functionality. It also includes algorithms to detect failures in advance to keep a high availability using the
models from Behavioural Modeling (Section 3.3) component.

3.2 Sidecar Controller (SC)
This component resides along with the local FaaS platform installation on the target platform where it acts as a local decision
maker. While the Control Plane is responsible for deciding the target platform on which the function invocation goes to, the
local decision to select a node of the Kubernetes cluster is taken by this component. Furthermore, it also checks whether to
schedule a locally triggered function locally or to delegate it to the higher level Control Plane.

3.3 Behavioral Modeling
This component is responsible for characterizing the behaviour of the function based on the monitoring information (from the
Monitoring component) and the deployment configuration file. It characterizes the application by the following models:
1. Application Event Model: Information about events like frequency of function invocations, sequence of functions invoked,

creation, deletion or upgrade of functions is used to build this Model. This model will then be used for use cases like anomaly
detection, forecasting of future events, events tracing etc. This event model will also be used for reducing the cold start time
by predicting the workload and starting the function containers before time.

2. Function Interaction Model: It characterizes the producer-consumer interactions of functions based on data accesses. The
interaction might, for example, suggest to package functions together to reduce the communication costs.

3. Data Access Model: It characterizes the functions with respect to their data accesses. It determines, for example, how fre-
quently data is read or written to certain databases or files. This can be useful for placement of functions considering the
caching scenarios.

4. Function Performance Model: The Function Performance Model will capture the performance with respect to time and
energy for certain combinations of resources, such as the number of cores, the network bandwidth, the memory size and I/O
bandwidth. The model will be based on measured information obtained from the FDN Monitoring (Section 3.1.2) as well
as on the current workload. This model will be used by the Scheduler (Section 3.1.3) to find the right target platform for
invoking the function (called as function delivery in this work) based on resource requirements and availability.

The models will be provided to the Scheduler (Section 3.1.3) and will be stored in the Knowledge Base (Section 3.4).
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3.4 Knowledge Base
This component stores the application models prepared by Behavioral Modeling (Section 3.3) as well as decisions taken by the
Scheduler (Section 3.1.3). The previously saved high performant decisions are used by the Deployment Generator (Section 3.5)
for automatically adding annotations to the deployment configuration in case of redeployments or on deployment updates of
the application. Furthermore, the external components, use the stored information for further analysis and decision making.
Scalable NoSQL and SQL databases along with the scalable file storage platforms are the basis for the implementation of the
Knowledge Base.

3.5 Deployment Generator
TheDeployment Generator is responsible for annotating the deployment specification provided by the user. The provided appli-
cation configuration file can describe the initial application deployment configuration but also serves as a measure to specify
updates to the already running applications. The Deployment Generator component inserts hints into the deployment specifica-
tion like where to deploy a function as well as function and data characteristics. Therefore, it adds annotations based on analyzing
the results in the Knowledge Base for previous deployments. This is especially important for deployment updates that modify
the running application. It also performs any required instrumentation to the application, for example, to enable data caching
and migration.

3.6 External Components
There are some external components which either aid the FDN to take better decisions or help the user by recommending some
deployment configurations for optimizing function deployment, explaining runtime decisions through some visualizations, or
benchmarking the overall FDN with various applications and functions. Following components are part of it:

• Recommendation and Visualization: It extracts data from the Knowledge Base, explains the FDN runtime decisions
to the user, and recommends certain configurations optimizing the application deployment. Such visualizations can be
helpful to the application developer for knowing where the functions are scheduled and based on that some optimizations
related to the system architecture can be added.

• FDNInspector (Benchmarking): This external component is responsible for benchmarking the FDN on certain functions
and applications. The benchmarking results can be further used for comparing the application performance by the user
on various target platforms. In this work, this component is described in more detail in Section 4.4, where we utilize it, to
show the opportunities offered by the FDN in achieving different objectives.

• Threshold Tuning: The decisions taken by the Scheduler (Section 3.1.3) are frequently based on thresholds that decide,
when to, for example, migrate data to a different target platform. A tuning based on historic data of the FDN will improve
the effectiveness of resource management across different applications. This tuning is part of this external component.

4 METHODOLOGY

In this section, we first present details about the different benchmarks used for evaluating various opportunities offered by the
FDN and then describe the five different target platforms used in this work. We also present the load testing details used for the
evaluation, and finally the high-level design and the functioning of the developed FDNInspector.

4.1 Benchmarks
To investigate the performance of each target platform available as part of the FDN, we used a subset of the benchmarks provided
with the FaaSProfiler40 and modified them for our use case. Furthermore, we developed OpenFaaS implementations of the
chosen functions to enable their execution on the target platforms using the OpenFaaS platform. TheOpenWhisk action container
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TABLE 2 List of FaaS based functions we developed or modified for demonstrating the opportunities offered by the FDN.

Function Name Description Language runtime

nodeinfo Gives basic characteristics of node like CPU count, architecture, uptime. Node.js
primes-python Calculates prime numbers till 10000000. Python3
image-processing Reads an image from object storage (here Minio) and performs basic operations Python3(flip, rotate, filter, grayscale and resize) to the image.
sentiment-analysis Sentiment analysis of the given text. Python3
JSON-loads Takes a big JSON file as input containing 1000 three coordinates (x,y,z) Python3records and return the average coordinates value.

generally includes code for the function along with its language runtime. OpenWhisk processes the incoming HTTP requests for
the function invocation with any number of arguments and sends the results back to the user or caller. For most of the functions,
we have used the default runtime environment provided by OpenWhisk depending on the language that the function is written
in. If a function uses some extra packages which are not part of their default language runtimes, we created a docker runtime for
it based on their default docker runtime. The OpenFaaS functions are also similar to OpenWhisk, however, we created our own
docker images for functions, to run them on the ARM platform. The Google Cloud Functions are also similar to OpenWhisk
functions, however, one cannot create their own docker image of the runtime.
The functions used as part of this work are summarized in the Table 2 along with their description and language runtimes.

The nodeinfo function exposes an HTTP endpoint and provides the user with basic information about the system such as
hostname, underlying architecture, number of CPUs, etc. We utilize this function to test the general performance of each target
platform and get an overall idea of their capabilities. The compute-intensive primes-python, sentiment-analysis and
JSON-loads functions are used for comparing the high-end target platforms (without the edge-based target platforms). Finally,
for demonstrating the advantage of data localisation opportunity in the FDN the object (in our work an image) access latency
from the MinIo39 object storage platform, is showcased using the image-processing function.

4.2 Experimental Target Platforms
To demonstrate the opportunities offered by the FDN, we evaluate the function benchmarks on five different target platforms
ranging from a high performance HPC node to resource-constrained edge devices. The configuration of each target platform,
type of FaaS platform used, and the number of nodes present in that target platform is shown in Table 3.
The edge-cluster consists of three embedded Nvidia Jetson Nano devices41. Due to the limited resources available on these

boards, it was not possible to run the heavy OpenWhisk platform on our edge-cluster, and OpenFaaS does support low-end
devices and provides binaries for ARM processors, therefore we utilized OpenFaaS on top of k3s42, a light weight version of
Kubernetes to host a Kubernetes cluster on it. k3s reduces the footprint and bootstrap-process of Kubernetes and combines all
the low-level components required for running a Kubernetes cluster such as containerd, runc, and kubectl into a single binary.
The cloud-cluster is composed of three virtual machines hosted on a private cloud at the Leibniz Supercomputing Center

(LRZ)43. Each VM has four virtual CPU cores and 8 GiB of memory. This target platform is based on OpenWhisk on top
of Kubernetes. Additionally, we used Google Cloud Functions (GCF) for creating google-cloud-cluster platform and internal
configuration details of the VMs or the containers in which the functions are deployed is not available for the user.
The other two target platforms represent compute nodes from High Performance Computing (HPC) environments. The hpc-

node-cluster is a dual-socket system, with each socket containing an Intel Cascade Lake processor with 22 cores and the old-hpc-
node-cluster consists of four sockets, with each socket containing an Intel Westmere-EX processor with 10 cores. We disabled
hyper-threading and turbo boost on both the HPC clusters. OpenWhisk on top of Kubernetes is deployed on each of these nodes.

4.3 Load Test Settings
The evaluation of various opportunities was done using the free and open-source load testing tool, k6 44. k6 uses a script for
running the tests where the HTTP(s) endpoint along with the request parameters are specified. HTTP(s) endpoint represents the
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TABLE 3 Different target platforms used as part of this work for evaluating the benchmarks.

Target Platform Processor FaaS Platform H/W Specifications Nodes in Cluster

hpc-node-cluster Intel(R) Xeon(R) OpenWhisk 44 Cores 1Gold 6238 CPU @ 2.10GHz 754 GiB memory
old-hpc-node-cluster Intel(R) Xeon(R) OpenWhisk 40 Cores 1CPU E7- 4850 @ 2.00GHz 251 GiB memory
cloud-cluster Intel(R) Xeon(R) OpenWhisk 4 vCPU 3CPU E5-2697A v4 @ 2.60GHz 8 GiB memory
google-cloud-cluster† N/A† GCF N/A† N/A†

edge-cluster ARMv8 Processor OpenFaaS 4 Cores 3rev 1 (v8l) 4GiB memory
† Host VMs or containers configuration information in which functions are deployed is not available.

deployed function endpoint and varies with each function and target platform in our work. Two of the other k6 parameters which
are configured as part of each test are:

• Virtual Users (VUs): Virtual Users (VUs) are the entities in k6 that execute the test and make HTTP(s) or websocket
requests. VUs are concurrent and will continuously iterate through the request endpoint until the test ends.

• Duration: A string specifying the total duration a test will run. During this time each VU will execute the script in a loop.
In our evaluations, duration was fixed to 10 minutes and number of VUs varied from 10 to 50 depending on the function

and the target platform. The total duration for which the metrics data is collected is set to 20 minutes and the sampling rate
is set to 10 seconds, i.e, metrics values are aggregated for 10 seconds. The term unit time refers to the sampling interval in
Section 5.
The number of requests per second generated by k6 depends on the number of VUs and the time taken by each request to

complete. For example, if there are 10 VUs with total test duration set to 10 minutes and each request from a VU took 30 seconds
to complete, then from each VU there will be 2 requests per minute and 20 requests per minute from 10 VUs with a total of
roughly 200 requests completed in the whole duration. Therefore it will vary for each target platform depending on the time
taken by each request to complete.
Moreover, we increased the default limits on the number of concurrent invocations and invocations per minute which can be

served in OpenWhisk to 99999 and increased the memory allocated to the invoker to 4096MiB for each target platform using
OpenWhisk.

4.4 FDNInspector
In this work, we introduce the FDNInspector2, a tool for benchmarking the different target platforms of the FDN to iden-

tify opportunities from smart function scheduling and data placement across the heterogeneous target platforms. This external
component of the FDN is built first to support our proposed work towards combing heterogeneous target platforms into the FDN.
FDNInspector is written in python and serves the following purposes:
• Facilitating the benchmarking via a centralized tool for remotely deploying and executing FaaS benchmarks on any of the

target platforms.
• Enabling load generation through function invocations for the desired duration and amount on different target platforms.
• Automatic collection of a diverse range of metrics.
• Visualization of the gathered information for manual analysis.

2https://github.com/ansjin/hetrogenous-faas-profiler
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FIGURE 4 Overall architecture of FDNInspector along with the interaction between its components when a load of function
invocations is generated for five different target platforms.

• Supports multiple testing opportunities which can be achieved using the FDN where new ones can be added easily.
Figure 4 shows the overall architecture of the FDNInspector and the interaction of its components with different target plat-

forms when functions are invoked. In our experimental setup, the hpc-node-cluster and old-hpc-node-cluster target platforms
are running on-premise in a private network and use a proxy server for accessing the internet. The cloud-cluster is running on
the private cloud at LRZ43 and can access the internet directly. The google-cloud-cluster is running on Google Compute Plat-
form (GCP) in us-east region. Similar to the HPC clusters, the edge-cluster is also running on-premise and uses a proxy server
for accessing the internet. The FDNInspector was deployed on a virtual machine having the access to all these target platforms
on-premise (in Germany). Each target platforms is running a Prometheus instance to collect data for a variety of metrics.
The user provides the input file in JSON format, an example of which is in shown in Listing 1. The target platform information

like host address, authentication, and hardware resources is present in the clusters configuration file (Line 2). Information related
to functions such as name, docker image, and runtime is present in the functions configuration file (Line 3). The user provides
the function name and the target platforms (based on OpenWhisk, OpenFaaS and public FaaS platform) on which the test is
to be executed (Line 5-7). Furthermore, the user provides the test parameters: number of virtual users (VUs) analogous to the
actual users, duration of the test, parameter file (if it exists) and how much time (in seconds) to sleep in-between the requests
(Line 8-14). This is particularly useful in cases where requests take a longer time to complete and we do not want to send the
next request until certain time has already been passed.
The Function Deployer takes this configuration file as input and deploys the functions on the listed target platforms. The wsk

command-line interface is used for deploying the functions onto the OpenWhisk based target platforms. For deploying functions
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Listing 1: Example configuration file in JSON format.
1 { " t e s t _name " : " example_ t e s t_name " ,
2 " f u n c t i o n s _ c o n f i g : " f u n c t i o n s / c o n f i g . j s o n " ,
3 " t a r g e t _ p l a t f o rm s _ c o n f i g " : " t a r g e t _ p l a t f o r m s / c o n f i g . j s o n " ,
4 " i n f l u x d b _ u r l " : " h t t p : / / l o c a l h o s t : 8086 / " ,
5 " o p e nwh i s k _ t a r g e t _ p l a t f o rm s " : [ " c l u s t e r −1 " , " c l u s t e r −2 " ] ,
6 " o p e n f a a s _ t a r g e t _ p l a t f o rm s " : [ " c l u s t e r −3 " ] ,
7 " p u b l i c _ c l o u d _ t a r g e t _ p l a t f o rm s " : [ " g o o g l e _ c l o u d _ c l u s t e r " ] ,
8 " t e s t _ i n s t a n c e s " : {
9 " i n s t a n c e 1 " : {

10 " a p p l i c a t i o n " : " pr imes−py thon " ,
11 " t e s t _ s e t t i n g s " : {
12 " vus " : " 30 " ,
13 " d u r a t i o n " : " 600 s " ,
14 " p a r am_ f i l e " : " " ,
15 " s l e e p " : " 1 "
16 }
17 }
18 }
19 }

on the OpenFaaS target platforms, faas-cli is used. For deploying functions on the google cloud target platform, gcloud is used.
Once the functions are deployed, we utilize k6 for invoking the functions on each of the target platforms based on the input
parameters (VUS, duration and sleep_time). After the load generation is finished, the Data Collector collects data for a variety
of metrics by querying the Prometheus instance of each target platform. The collected data is presented to the user through
graphs. After completion of the tests, the Function Destroyer deletes the function instances from each target platform.

5 RESULTS

We evaluate the five target platforms for demonstrating the opportunities offered by the FDN for handling function scheduling
and data placement in these heterogeneous target platforms in achieving different objectives. However, before evaluating them it
is important to know the capability of each target platform. To this end, we evaluate the resource usage of the nodeinfo function
on each cluster by varying the number of virtual users (from 10 to 50). Figure 5 shows the result of the conducted evaluation
for different metrics represented as rows (from bottom to top): Number of requests processed, percentage CPU utilization of the
cluster, number of activations and the 90tℎ percentile (P90) of the response time in seconds of the requests. Different numbers
of VUs are represented as columns (increasing from 10 VUs to 50 VUs). The edge-cluster exhibits the worst performance in
terms of the number of requests processed (approximately 70-150 requests/second) and P90 response time (approximately 1
second and above) across all scenarios. This can be attributed to the limited number of resources and low compute capability of
ARM processors as compared to other architectures in our platform. When the number of VUs are less than or equal to 20, the
four target platforms: hpc-node-cluster, old-hpc-node-cluster, google-cloud-cluster and cloud-cluster perform similar. However,
when the load is increased to 50 VUs (last column in Figure 5), the different compute capabilities of each target platform is
more prominent. The hpc-node-cluster performs best and can handle around 500 requests per second with the P90 response
time being below 500 ms. The google-cloud-cluster performs second-best followed by the old-hpc-node-cluster and then the
cloud-cluster with requests per second and P90 response times being 450, 500ms, 400, 1s, and 200, 2.5s respectively.
It is apparent from the metric P90 Response Time, that the requests initially suffer from the cold-start problem45 in all tests

for all the target platforms. The initial P90 response time is above five seconds, but after the containers are warm it decreases
significantly for all the target platforms. Activations represent the number of functions invoked overtime. All the requests in
OpenWhisk were sent with the blocking parameter enabled. This means that a function invocation request will wait for the
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FIGURE 5 Comparison between different target platforms on four different metrics (represented as rows) when nodeinfo
function is invokedwith variedworkload (represented as columns). The edge-cluster being a resource-constrained target platform
exhibits the worst performance in terms of the number of requests processed (maximum 150 requests/second) and their P90tℎ
response time (minimum 1s) among all the five target platforms. All the other target platforms perform similar at a workload
less than 50 VUs. However, at 50 VUs workload, the different compute power of each target platform is more prominent (hpc-
node-cluster and google-cloud-cluster exhibiting the best performance). It is to be noted that the 90tℎ percentile response time
of the requests is truncated above 2, 4 and 10 seconds in each of the workloads to show better comparison after the initial longer
requests time due to cold-start.

activation result to be available. For OpenFaaS there is no such parameter and it is by default blocking. For the workload with
50 VUs, hpc-node-cluster has the highest number of activation’s since it serves more number of requests over time as compared
to the other clusters. The overall CPU utilization of both HPC node clusters is similar across all tests and is lower than the
utilization of the other two clusters. The CPU utilization metric indicates amount of workload a cluster can handle.
Figure 6 shows the detailed view of all the 9 metrics (divided into 3 classes: user-centric, platform-centric and infrastructure-

centric parameters) when the workload of 20 VUs is applied on the nodeinfo function for all the five target platforms. Execution
time represents the function execution time and response time is the difference between the time when the request was sent
and when it was returned. For each target platform, initially the function execution time is high due to cold-starts (2nd row,
2nd column), and slow increase in the number of replicas (3rd row, 2nd column). Since, the edge-cluster was deployed on the
OpenFaaS platform, values for the cold start metric were not available due to them being not exposed by OpenFaaS. It is only
possible to obtain them through external instrumentation. Also, various infrastructure level metrics from within the google-
cloud-cluster requires external instrumental and were not done within the scope of this work. While the nodeinfo function does
not have much effect on the memory usage of a target platform, a significant change can be observed in the CPU and disk I/O
usage for all target platforms. Based on the values of these metrics, different derived metrics can be formulated. For instance,
the relation between the number of requests and the replicas created or a relation between the function execution time and the
CPU usage of the target platform. These derived metrics can then be used for scheduling the functions to the target platform
based on their requirements. In the later half of this section, a subset of these metrics is used for demonstrating the opportunities
FDN offers in achieving different objectives.
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FIGURE 6 Comparison of nodeinfo function for all target platforms with workload from 20 VUs on three different classes of
the metrics.

nodeinfo being a simple HTTP endpoint function, does not characterize the performance of the target platforms for more
complex functions. Towards this, we perform a workload test with 30 VUs using three different functions: primes-python
and sentiment-analysis being compute-intensive and JSON-loads being I/O-intensive (see Table 2). Figure 7 shows the
results of our experiment, where three different functions are represented as columns and four different metrics are represented
as rows. The edge-cluster cannot handle a high load for these three different functions, therefore this comparison is only con-
ducted for the four target platforms: hpc-node-cluster, old-hpc-node-cluster, cloud-cluster, google-cloud-cluster. The function
primes-python is the most compute-intensive with a P90 response time of 14 seconds and 2 seconds per request for the cloud-
cluster and hpc-node-cluster respectively. Also, google-cloud-cluster performed worst for this function with 20 requests per
unit time and 19 seconds as P90 response time. This could be attributed towards the inability of the GCF to handle compute
intensive functions. Furthermore, this evaluation results demonstrates the higher computation power of the hpc-node-cluster
as compared to the other target platforms. For the other two functions, all target platforms perform similar to each other with
google-cloud-cluster performing the best. However, the CPU utilization of cloud-cluster is much higher for the JSON-loads and
sentiment-analysis functions. Due to high computations requirement for primes-python function, each target platform is
able to process smaller number of requests per unit time (maximum around 100 requests per unit time) as compared to the other
functions (maximum around 250 requests per unit time). Such an analysis can be used to derive inter-target platform relations
for the same function. Inter-target platform relations can be used to offload a function from one target platform to another based
on the function’s performance within one target platform and then using these relations to find which target platform will be
ideal for it.
In the following subsections, we present and evaluate various opportunities that the FDN offers in achieving two main

objectives: meeting the SLO requirements and energy efficiency. All the opportunities presented in meeting the objectives are
evaluated using the implemented FDNInspector.

5.1 Objective 1: Meeting the SLO Requirements
A Service Level Agreement (SLA) defines a contract between the provider and the client to meet certain Service Level Objectives
(SLO), such as a minimum uptime or a maximum response time. Due to the current homogeneity of nodes in FaaS platforms, it
is not possible to scale the function vertically or to provide a specialized machine for its execution. In the case of heterogeneous
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FIGURE 7Comparison of three different functions: primes-python, sentiment-analysis and JSON-loads for three target
platforms with 30 VUs generating the load on four different metrics.

target platforms, functions can benefit from the heterogeneity of the underlying platforms and can help in meeting the SLOs.
FDN offers multiple opportunities in achieving this and a few of them are presented and evaluated in the following subsections.

5.1.1 Function scheduling based on the target platform’s performance
One method is to always invoke the function on a target platform that has the highest compute capability (and gives the best
performance). The hpc-node-cluster performed best among all target platforms as shown in Figure 7. Therefore, function invo-
cations can always be scheduled on this target platform to meet the SLO, with the assumption that no new target platform is
added to the FDN. If a new target platform is added, then first it needs to be benchmarked to analyze it’s performance and then
accordingly ranked among the target platforms (in this work hpc-node-cluster, old-hpc-node-cluster, cloud-cluster, and edge-
cluster respectively). Following this, the functions requiring strict SLOs can be scheduled on the target platform with the highest
performance.

5.1.2 Scheduling based on the target platform’s resource utilization
Scheduling the function invocations on the target platform with the highest compute capability will not always lead to the best
performance. For example, in the situation in which a workload is already running on the target platform. In this case, scheduling
function invocations on it can hamper the performance of both the workloads and result in SLO violations. Therefore, it is
important to know the usage of each target platform before scheduling functions on them. Figure 8 shows the performance
comparison of image-processing function invocations for 40 VUs on the old-hpc-node-cluster across three scenarios: 1) when
there is no additional workload on the target platform, 2) when the target platform has an additional 50% CPU load on it, and 3)
when the target platform is fully utilized. Scheduling the function invocations on a target platform with 100% CPU load leads to
a degradation in its performance (the P90 response time approximately increased from 0.8s to 1.5s and the number of requests
processed decreased by 100 per unit time). However, for scenario 2, no decrease in performance is seen.
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FIGURE 8 Performance comparison of image-processing function with invocations generated from 40 VUs on the old-hpc-
node-cluster in three scenarios: 1) when the cluster is idle, 2) when the target platform has additional 50% CPU load on it, and
3) when the target platform has additional 100% CPU load on it. Scheduling the function invocations on a cluster with 100%
CPU load underneath can impact its performance.

FIGURE 9 Performance comparison of image-processing function with invocations generated from 40 VUs on the old-hpc-
node-cluster in three scenarios: 1) when the cluster is idle, 2) when the target platform has additional 50% Memory load on it,
and 3) when the target platform has additional 100% Memory load on it. Scheduling the function invocations on a cluster with
100% Memory load underneath can impact its performance significantly.

The performance comparison of image-processing function for the same three scenarios for 40 VUs on the old-hpc-node-
cluster with additional load on memory rather than on the CPU is shown in Figure 9. When a function is invoked it leads to
the creation of function replicas that require a certain amount of memory (in this work 256MB). If the required memory is not
available, the performance is decreased as shown in Figure 9. Scheduling function invocations on a target platform with 100%
memory load leads to a significant decrease in performance (the P90 response time approximately increased from 0.8s to 6s).
However, similar to Figure 8 invoking functions on a machine with an additional 50% memory load does not affect performance
as there is still free memory available for creating additional function replicas.
Therefore, because of the heterogeneity offered by the FDN, offloading the function invocations from one target platform

with high resource utilization to another with a lower value will result in meeting the SLOs. Furthermore, this approach can
also be applied for placing or scheduling functions together if they are using complimentary resources. For instance, placing
memory-intensive and compute-intensive functions together on the same target platform and placing other compute-intensive
functions on different target platforms will lead to optimal utilization of the underlying resources. In this way, the performance
of functions will not decrease on simultaneous execution.

5.1.3 Collaborative execution based on the utilization of different target platforms
This method can be helpful in scenarios where there is some additional load on the target platform and scheduling function
invocations on multiple target platforms can prevent performance degradation and SLO violations. In this work, we created
a NGINX server in between the old-hpc-node-cluster and the cloud-cluster for collaborating the function invocations to both
clusters as shown in Figure 10. We consider two scenarios :
1. Round-robin Collaboration: In this case the function invocations are distributed across both target platforms in a round

robin manner.
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FIGURE 10 Performance comparison of primes-python function with invocations generated from 30 VUs on the old-hpc-
node-cluster, cloud-cluster, and when both were collaborated together in round-robin and weighted load balancing manner.

2. Weighted Collaboration: The biggest drawback of using the round robin approach is that it assumes target-platforms are
similar enough to handle equivalent loads. However, because of heterogeneous target platforms in the FDN, the algorithm
has no way to distribute more or less requests to these target platforms based on their resources. As a result, target platforms
with less capacity may overload and fail more quickly while capacity on other target platforms remains idle. Therefore, in this
case we use weighted collaboration, where function invocations are distributed across the two target platforms based on the
weights assigned to each target platform. In this work, old-hpc-node-cluster target platform is assigned a weight of five and
cloud-cluster of one, which means that out of total six function invocations, five will be invoked on the old-hpc-node-cluster
and one on the cloud-cluster.
We deploy the primes-python function on the two target platforms old-hpc-node-cluster and cloud-cluster. To demonstrate

the benefits of collaborative function invocations between multiple target platforms, we consider four scenarios. In scenarios 1
and 2, all functions are invoked exclusively on the old-hpc-node-cluster and cloud-cluster respectively. For scenarios 3 and 4,
the two target platforms are collaborated together with round robin and weighted manner. For all scenarios, we generate a load
of 30 VUs. The performance comparison for all the four scenarios is shown in Figure 10. We observe a significant increase in
performance when the two platforms are collaborated with round robin manner as compared to when the functions are invoked
exclusively on the cloud-cluster. In this case, the number of requests processed increased from 20 to 55 per unit time with a
lower P90 response time of six seconds per request. Moreover when compared to scenario 1, the number of requests served were
higher in scenario 3 with approximately the same P90 response time. We observe the best performance in scenario 4, i.e., with
weighted collaboration. In this case, 60 requests per unit time were served with a response time of five seconds per request.
Collaboration between multiple heterogeneous target platforms in the FDN is a method to overcome the shortcomings of

individual target platforms. Additionally, this mechanism can also be used to reduce the cold-start problem. This can be done by
keeping a low resource cluster always warm and directing initial function invocations to it and later using weighted collaboration
between other target platforms. Moreover, it is also possible to create a dynamic rule inside the load balancer that checks for the
warm target platform and directs the initial function invocations to it leading to a overall better performance.

5.1.4 Data Localisation
Although functions in FaaS are stateless, changes in state and look-ups require frequent access to databases and object stor-
ages. Current platforms do not take into account the data access behaviour of functions while scheduling. This leads to longer
execution times and a violation of the SLO requirements. To demonstrate this, we hosted 2 MinIO39 instances: one locally on
the target platform and another remotely on the Google Compute Platform (GCP) in us-east region. MinIO is an object store,
which can store unstructured data such as photos, videos, log files, backups and container images. Following this, we evaluated
the performance of the image-processing function, that takes an image from the two MinIO instances and performs different
operations on them. For our experiments, we used the cloud-cluster with function invocations for 20 VUs for accessing the
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FIGURE 11 Performance comparison of image-processing function with invocations generated from 20 VUs on the cloud-
cluster when the data is available locally and remote.

data from the two MinIO instances and google-cloud-cluster with same number of function invocations for showcasing the per-
formance when the function is scheduled closer to the remote data storage. Figure 11 shows the performance comparison for
these three scenarios. The cloud-cluster with function invocations accessing the local MinIO instance was able to serve more
requests (approx. 60 per unit time) than when accessing the remote MinIO instance (approx. 45 per unit time) and at a lower
P90 response time (three seconds per request than four seconds per request in case of the remote MinIO instance). Executing the
function on the google-cloud-cluster performed worst with 20 requests per unit time at P90 response time of 8.5 seconds. This
can be attributed towards the inability of the GCFs to handle compute intensive functions and also to the large latency caused by
difference in the regions from where the request is executed (in Germany) and where the request is handled (in us-east region).
Migrating data closer to the target platform can significantly reduce the access latency. Hence, adaptive data management

is a key part of the FDN in meeting the SLOs. For instance, data required for training a neural network can be migrated to a
high-performance target platform. This will reduce the data access latency leading to a decrease in training time. Furthermore, a
subset of the data can be migrated to edge-cluster for low-latency machine learning model inference. Additionally, placement of
the functions closer to data location can provide an another way of achieving a lower access latency. However, in our experiments
when we executed the function on google-cloud-cluster which is closer to data performed worst due to the large difference in
between the execution and processing locations. Nevertheless, one can use such a strategy to handle large function requests
when the local cluster doesn’t have enough resources for handling the requests.

5.2 Objective 2: Energy Efficiency
Another important objective which is highlighted in the FDN is providing energy efficiency for certain amount of workloads due
to the availability of resource-constrained target platforms like our edge-cluster. This cluster is made up from Nvidia’s Jetson
Nano edge devices and consumes significantly less energy than the other target platforms.
To obtain power measurements for the Jetson Nano edge devices, we utilize the inbuilt power monitors46 that measure power

consumption for different supply rails. Specifically, we measure the power consumption for the rail POM_5V_CPU. On the other
hand, the power consumed by the hpc-node-cluster is obtained through running average power limit (RAPL) counters PKG0 and
PKG1 for the two sockets respectively. It is important to note that for all experiments we measure the CPU power consumption
and average the power values over five runs of the same experiment. We evaluate the energy consumed by edge-cluster and
hpc-node-cluster when a load of 400 requests per second from 40 VUs is invoked on the function JSON-loads deployed on
each one of them. We calculate the energy consumed by multiplying the average power with the duration of the experiment.
Although, the P90 response time (6.32s) is higher for the edge-cluster as compared to hpc-node-cluster (2.3s), the total number
of requests served is same for both target platforms (400 requests per second). Therefore, if a client has a SLO P90 response
time of seven seconds then both target platforms can be used for meeting it for this workload. However, there is a significant
difference in the CPU energy consumption of the target platforms as shown in Table 4. For the edge-cluster, we obtain a total
CPU energy consumption of around 2647.2 Joules as compared to 44645.64 Joules for the hpc-node-cluster. Table 4 also shows
the individual CPU power consumption with and without workload for each node in edge-cluster and for each socket in hpc-
node-cluster. Clearly, choosing edge-cluster as the target platform for this small workload saves a lot of energy. Automatically
placing the functions on the low energy consumption target platform based on the workload is part of the FDN.
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TABLE 4 Total energy consumption for edge-cluster and hpc-node-cluster target platforms when a load of 400 requests per
second using 40 VUs is invoked on the function JSON-loads.

edge-cluster hpc-node-cluster

Node 1 Node 2 Node 3 Socket 0 Socket 1

CPU power consumption without workload (W) 0.457 0.390 0.489 30.6757 29.566
CPU power consumption with workload (W) 1.414 2.046 0.952 37.399 37.01
Total CPU energy consumption (J) 2647.2 44645.64

6 DISCUSSION

In this section, we discuss a few other opportunities offered by the FDN that can be used for achieving various objectives.

6.1 Heterogeneity among FaaS platforms
We have used three different FaaS platforms in this work (OpenWhisk, OpenFaaS and GCFs) but there are several others
which are available including the ones offered by the public cloud providers like AWS lambda function from Amazon, and
Azure functions from Microsoft. One can integrate all these together into the FDN. However, mapping the metrics from all
these platforms to a common metric so that the FDN can make decisions is challenging due to differences in their semantics,
aggregation, and measurement.
Mature platforms like OpenWhisk use optimized caching and distinguish between cold, prewarm and warm containers to

address the cold-start problem47. Prewarm containers are containers that already have the runtime environment for an action
set up. For example, when OpenWhisk’s algorithm anticipates Node.js based actions, it will start preparing generic Node.js
containers, which reduces most of the cold-start time. When an action is executed very frequently, OpenWhisk will detect that
and keep its containers warm. Warm containers are containers where the action is already initialized and ready to be run at any
time. On the other hand, OpenFaaS does not have the concept of warm and pre-warm containers as a result this can affect the
performance on the target platform when using it. OpenFaaS like OpenWhisk does support the option to scale to zero and hence
save money on idle resources. Additionally, OpenFaaS provides support for low-end edge devices with ARM processors and
therefore is a clear candidate for usage on edge target platforms. Public cloud providers FaaS platforms provide an advantage of
executing the functions globally in any region of the world and also have large scaling capabilities.
FDN offers heterogeneity between FaaS platforms through which multiple devices with different system architectures such

as android phones can be integrated into it. Furthermore, using the FaaS platform optimized for certain system architectures
such as tinyFaaS for edge devices can lead to a higher performance and better SLOs. This can be exploited by the application
developers.

6.2 Application optimization based on the underlying hardware
Due to the availability of heterogeneous target platforms in FDN, application function developers can optimize their code to use
specialized hardware like GPUs or specialized processor features like SIMD/AVX for running their functions. For designing such
applications, hints or recommendations on which target platform the function will be scheduled by the FDN can be provided to
the developer which will allow developers to target code for specific hardware features, to provide innovative hardware/software
co-design. Moreover, application developers could provide functions using a high-level domain specific language, and the FDN
can automatically compile these functions to the most cost-effective target platform based on the user specified SLOs.
Furthermore, conventional enabling technologies for ML at edge networks require personal data to be shared with external

parties, e.g., edge servers. Recently, in light of growing data privacy concerns, the concept of Federated Learning (FL) has
been introduced48. In FL, end devices use their local data to train an ML model required by the server. The end devices then
send the model updates rather than raw data to the server for aggregation. FL can serve as an enabling technology in edge net-
works. However, in a large-scale and complex mobile edge network, heterogeneous devices with varying constraints are involved
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which raises challenges of resource allocation in the implementation of FL at scale. FDN having heterogeneous target platforms
including the edge can be used to provide automatic resource allocation and function scheduling for FL based applications.

6.3 Function Composition
Functions can also be chained together into sequences where chained functions use the output of the preceding function as input.
In AWS lambda platform these are called step functions49. AWS lambda charges an additional cost for each transition from one
function to another50. Therefore, in such cases, in order to reduce the number of state transitions to make the overall deployment
cost-efficient without violating the SLOs, multiple functions can be composed together. Moreover, functions with different
functionalities can be composed together into a larger function tomeet user requests when serving requests from a single function
is not possible. For example, if the output parameters of one function can be used as the input parameters of another function,
these two functions can be connected as a new function with input parameters that are the same as the input parameters of the
first single function and output parameters that are the same as the output parameters of the second function. This new function
is called a composed function, and the elemental functions are referred to as the member functions. Deploying these member
functions together on a target platform having higher compute capability can result in higher QoS of the overall application. One
way of achieving this in FDN is by deploying member functions together within a kubernetes pod, and then the two functions
will always be deployed together, resulting in lower number of transitions and cost reduction. In5, the author mentioned about
the problem of double-spending with function composition, where a serverless function (composer function) whose purpose is
to just call other serverless functions is also billed to the user although only the called functions are consuming the resources.
FDN can recognize such composer functions and automatically schedule them to the low-resources target platforms to reduce
the overall cost.

7 RELATEDWORK

Researchers have already identified the limitations of current serverless platforms, such as no control over specifying additional
hardware resources like the required number of CPUs, GPUs, or other types of accelerators for the functions, and inefficient
communication patterns between functions because of the data access latency51,52,34. Jonas et al.7 suggest some improvements
and workarounds which can be adopted to overcome these limitations. Since the FDN targets heterogeneous platforms, it over-
comes these limitations by taking into account the computational (CPUs, GPUs etc.) and data requirements (remote or local data
availability) of the function and then schedules the function automatically on the right target platform. In this process, migration
of data closer to the function can also take place if there is a higher data access latency. Furthermore, Shahrad et al.40 stud-
ied the architectural implications of serverless computing and pointed out that exploitation of system architectural features like
temporal locality and reuse are hampered by the short function runtimes in FaaS. In the FDN, application function deployment
hints regarding deployment target platforms of the functions will be provided to the user from which the developer can exploit
the system architectural features to optimize the application and achieve higher SLOs.
In the following paragraphs, we present prior work from three aspects: (i) heterogeneity in public cloud providers FaaS

platforms performance and how FDN can take advantage of this, (ii) FaaS for HPC and how FDN can be advantageous for HPC
workloads, (iii) FaaS for edge devices, and (iv) different strategies for coordination among heterogeneous platforms and how
FDN strategies differs from them.
FaaSProfiler40 is the first to take a bottom-up approach in analyzing the architectural implication to unwrap the server-level

overheads in the FaaS model. They analyzed the difference between native and in-FaaS function execution and calculated the
additional server-level overheads like computational overheads, memory consumption, bandwidth usage, and management over-
heads like orchestration, queuing, scheduling, and power consumed. Furthermore, Lee et al.53 compared the performance of
various serverless computing environments offered by public cloud providers by showcasing the results of throughput, net-
work bandwidth, file I/O and compute performance regarding the concurrent function invocations. L.Wang et al.54 performed
an in-depth study of resource management and performance isolation with three popular serverless computing providers: AWS
Lambda, Azure Functions, and Google Cloud Functions. Their analysis demonstrates a reasonable difference in performance
between the FaaS platforms and states that azure functions use different types of VMs hosts and 55% of the time a function
instance runs on a VM with debased performance. They have also stated that on Azure the functions host VMs can have 1, 2 or
4 vCPUs. Additionally, K. Figiela et al.55 developed a cloud function benchmarking framework. CPU intensive functions were
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deployed in major cloud providers FaaS platforms. The authors observe fluctuation in response time duration based on the dif-
ferent underlying hardware, runtime systems, and resource management. These observations showcase the heterogeneity in the
performance and resources availabilities from the public cloud FaaS offerings. Thus, FDN across these public FaaS platforms
can provide a way for enabling the scheduling of the functions on them by delivering the function in a right platform based on
its requirements in such a way that the performance is adhered to the defined SLOs at the lowest cost.
Lynn et al.56 studies seven different public serverless platforms including, AWS Lambda, Google Cloud Functions, and

Microsoft Azure Functions, to showcase that serverless computing can be applied to a wide range of use cases. Serverless
computing is highly relevant for scientific applications, especially in conjunction with HPC capabilities57,58. PyWren57 utilized
an external ad-hoc orchestrator to share state and synchronize parallel execution of functions in simple map-reduce applica-
tions. There has also been some work to enhance the function startup latencies such as SAND59 in which the authors utilized
application-level sandboxing, and a hierarchical message bus for achieving shorter startup delays and efficient resource usage.
McGrath et al. in60 proposed a queuing scheme with workers in which function containers that can be reused are put into warm
queues and workers where new containers need to be created are put into cold queues. Splillner et. al.61 demonstrated that FaaS
cloud model can be used for different HPC batch workloads, such as, calculating the value of �, image face detection, password
cracking, and weather forecasting. Malla et al.62 compared Google Cloud Functions with Google Compute Engine in terms of
cost and performance for a HPC workload. They found that FaaS can be 14% to 40% less expensive than IaaS for the same
level of performance, but, performance of FaaS exhibits higher variation due on-demand CPUs allocation by the cloud service
providers. Based on these observations we have integrated FDN to HPC nodes cluster platform. Furthermore, FDN provides the
option of scheduling the HPC based workload function to more performant HPC nodes cluster platform or to highly available
and scalable public cloud FaaS platforms. The decision to choose a platform can be made based on the user requirements such
as performance vs cost. In our previous work, we used similar approach for achieving federated learning using heterogeneous
FaaS platforms 63.
The first documented efforts for bringing serverless capabilities to the edge came from industry with the introduction of

AWS Lambda@Edge3 that allows one to explicitly deploy lambda functions to edge locations. This is then used within the IoT
Greengrass system of Amazon9. It allows to integrate edge devices with cloud resources in an IoT platform and application
Lambda functions running on it are deployed to the edge computers. Baresi et al.64 propose a serverless model for Multi-
Access Edge Computing (MEC). They provide a broader range of application scenarios along with optimizations that compose
a serverless edge platform. KubeEdge65 is an open source system extending native containerized application orchestration and
device management to hosts at the edge. These frameworks focus on executing the applications only on the edge by extending
cloud based FaaS platforms on the edge. Pfandzelter et al.32 highlight the problem of running cloud based FaaS platforms on the
edge and introduce a new FaaS platform called tinyFaaS for edge environments. FDN includes edge-cluster platform, allowing
the opportunity of scheduling the functions closer to the user and hence providing a better performance. Furthermore, FDN
allows multiple instances of same function to coexist across multiple heterogeneous platforms, thus providing a way for handling
function invocations from various opportunistic requirements.
With respect to these works, our proposed FDN provides a way for cooperation among various heterogeneous platforms for

increasing the performance, robustness and scalability of these platforms. To share resources efficiently for multiple tasks in
the cloud, a game-theoretic approach is introduced by Freeman et al.66. Designed for latency critical applications, PARTIES67
presents an online learning approach to efficiently allocate fine-grained resources such as memory bandwidth and last level
caches without QoS degradation. Delimitrou et al.68 present a cooperative filter based approach to assign a workload to the most
appropriate hardware configurations. Satyanarayanan et al.69 propose an edge computing approach to offload computation from
mobile devices to the network edge using virtual machine (VM) based cloudlets. In fog and edge70,71 computing, a considerable
amount of research work has also been done for developing methods for resource provisioning andmanagement. Also, there have
been studies on integrating edge and cloud computing for allowing the deployment of services on the resource-constrained edge
devices and offloading compute-intensive parts to the cloud72,73,74,75. Although the different proposed approaches for resource
provisioning show promising results in traditional computing environments, they have not been evaluated and extended for
the heterogeneous collection of target platforms in FDN especially involving HPC systems. Bermbach et al.76 have a very
particular auction-based approach in which application developers bid on resources fog nodes to make a local decision about
which functions to offload while maximizing revenue. It requires no centralized coordination and focuses on maximizing the
earnings for the infrastructure provider. On the other hand, there is no guarantee for the user that its function will be executed.

3http://docs.aws.amazon.com/lambda/latest/dg/lambda-edge.html
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Our approach within FDN is designed to have a central coordination point and focuses on the fast response to the user. Hellerstein
et al.34 describe FaaS as a data-shipping architecture in the sense that it still ships data to code rather than shipping code to
data and see it as perhaps the biggest shortcoming of FaaS platforms. The approach of fluid code and data placement, described
as stepping forward to the future, is the suggested solution to the problem previously mentioned by which the platform would
physically colocate certain code and data. Based on this approach, we designed the data migration and function placement
strategies in FDN.
To the best of the authors knowledge there has not been any work which involves using heterogeneous platforms Cloud, edge

and HPC together for achieving different objectives in a serverless manner.

8 THREATS TO VALIDITY

In this section, we discuss potential threats to validity for replicability and reliability of the study, and external validity.
There are two threats towards the replicability and reliability of the study. The first one lies in the type of the systems used

in this study as experimental target platforms. These systems with the presented configurations may not be publicly available
with everyone and hence presents a threat towards the replication of the presented results. However, even if the systems similar
to the systems with the presented configurations are used, the authors believe that the drawn conclusions would still be true.
Furthermore, the presented study showcase that different heterogeneous platforms provide different opportunities for scheduling
functions across the platforms. Secondly, in this study we can see a potential risk of confirmation bias towards the reliability of
the study where we try to to confirm our assumptions. This risk was mitigated by checking ourselves to make sure that we do not
have any preference in regard to the outcome. The whole research process is conducted using open source tools along with the
standard benchmarks and is made transparent, from how we gathered data, designed the tool and conducted our performance
evaluations. Additionally, we open source our designed tool and all the collected data.
There are two major threats to the external validity of the study. The first one lies in the limitation of the benchmarks used in

the work. The benchmarks used are smaller than the complex industrial FaaS applications and do not involve various public cloud
service providers BaaS services. The second one lies in the amount of the user workload generated for the benchmarking. The
generated user workload may be simpler and smaller than the real workload and represents only a limited part of different types
of possible workloads. Thus it is not clear whether the work can be effectively applied for much larger industrial applications and
to more complex and real user workloads. Furthermore, the drawn conclusions and opportunities presented in this study may
change with the change in the type of platforms used for the evaluations and thus can not be generalized for all the platforms.

9 CONCLUSION

Due to the current limitations of serverless computing for applications which are highly dynamic in their structure and com-
putational requirements, we introduced the Function Delivery Network (FDN), a network of distributed heterogeneous target
platforms enabling the automatic scheduling of heterogeneous functions to target platforms based on their computational and
data requirements. Additionally, the concept of Function Delivery Network (FDN) was evaluated using five distributed target
platforms having different computational capabilities (ranging from small edge servers to high-end HPC based machines) for
achieving two goals: SLO requirements and energy efficiency using FDNInspector, a tool for benchmarking distributed FaaS
based target platforms. It was found that scheduling function invocations to the high-performance target platform leads to a
higher QoS in most cases. However, in the scenario where the target platform’s resources are already being used, scheduling
functions on it can lead to a degradation in QoS of the application. Therefore, it is important to consider the resource-usage
of the target platform before scheduling functions on it. Moreover, collaborating the function invocations between the multiple
target platforms can lead to a higher QoS as compared to scenarios where functions are exclusively invoked on individual target
platforms. Migrating data closer to the target platform can also significantly reduce the data access latency. We showcase that
such opportunities offered by the FDN can help in meeting the SLO requirements. Finally, using an edge-based target platform
can achieve significantly lower energy consumption. In this work, we showed that by using an edge-based target platform the
overall energy consumption is reduced by 17x as compared to scheduling it on a high-end target platform, without violating the
SLO requirements .
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In the future, we plan to complete the implementation of the Function Delivery Network and demonstrate its use for the
various dynamic heterogeneous applications such as Federated Learning. In addition, integrating AWS lambda as one of the
target platforms in FDN is another perspective future scope.
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