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Abstract

Federated learning (FL) enables resource-constrained edge
devices to learn a shared Machine Learning (ML) or Deep
Neural Network (DNN) model, while keeping the training
data local and providing privacy, security, and economic ben-
efits. However, building a shared model for heterogeneous
devices such as resource-constrained edge and cloud makes
the efficient management of FL-clients challenging. Further-
more, with the rapid growth of FL-clients, the scaling of FL
training process is also difficult.

In this paper, we propose a possible solution to these chal-
lenges: federated learning over a combination of connected
Function-as-a-Service platforms, i.e., FaaS fabric offering
a seamless way of extending FL to heterogeneous devices.
Towards this, we present FedKeeper, a tool for efficiently man-
aging FL over FaaS fabric. We demonstrate the functionality
of FedKeeper by using three FaaS platforms through an image
classification task with a varying number of devices/clients,
different stochastic optimizers, and local computations (local
epochs).
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1 Introduction

Cloud computing with on-demand provisioning of resources
through virtualization and scaling has provided a method for
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applications to run at scale at relatively cheaper costs [14].
However, due to the presence of high-speed communication
networks, and containerization, computation, and processing
of data can occur across a wide variety of devices. These
range from resource-constrained edge devices to modestly
priced servers with mid-range resources to expensive high-
performance computers with extensive compute, storage, and
network capabilities. The introduction of serverless comput-
ing, particularly function-as-a-service (FaaS) [2] has made
the execution of functions on these heterogeneous devices
along with the cloud possible [4].

Heterogeneous devices collect manifolds of data [6] each
day. Coupled with deep learning, the data generated by these
devices can be used to enable intelligent applications. How-
ever, with the imposition of various data privacy legislations
such as the European Commission’s General Data Protection
Regulation (GDPR) [7], and increasing concerns over trans-
mission of raw data to a centralized location for training in
the traditional cloud-centric approach [5] there has been a
growing interest in federated learning (FL) [15]. FL enables
the collaborative training of Machine Learning (ML) or Deep
Neural Network (DNN) models and addresses the fundamen-
tal problems of privacy and ownership of data. It involves
local model training on remote clients followed by global
aggregation of the updated model parameters. In this con-
text, any end device can act as a "client" or multiple "clients"
can be hosted on the same device in isolation [13]. However,
training a shared model for end clients makes management
tasks such as creation, deletion and invocation challenging.
In addition, communication is a critical bottleneck in feder-
ated networks. Extending the FL over a massive number of
heterogeneous clients can lead up to slower communication
in the network than local computation by many orders of
magnitude [13].

Connecting multiple FaaS platforms to form a FaaS fab-
ric provides a seamless way for extending FL to end clients
where they can act (train or inference) on local data by run-
ning FaaS-based functions, while still using capabilities of the
FaaS platforms for management, simplicity of fine-grained
functions and the capability of the cloud to scale. In addi-
tion, each client can store it’s data privately in the Cloud
storage and FaaS-based client functions running in isolation
on the Cloud FaaS platform can utilize the compute capabili-
ties of the cloud for communicating and training the model
efficiently.

Our key contributions are:
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• We introduce the extension of FaaS to multiple hetero-
geneous FaaS platforms: Google Cloud Functions (on
Google cloud), OpenWhisk (on a high-end server) and
OpenFaaS (on three edge devices), called FaaS fabric
working together for managing FL at scale.

• We present FedKeeper, a python based tool for effi-
ciently managing FL over FaaS fabric.

• We show the functionality of FedKeeper through an
image classification task with a varying number of de-
vices/clients, different stochastic optimizers, and local
computations (local epochs).

2 Background

2.1 Federated Learning

The objective of the standard FL problem is to learn a single
ML or DNN model from decentralized data stored on multiple
remote clients [15]. A key property of the FL problem is that
the training data present on each client does not represent the
population distribution, i.e., non-IID. FL system consists of
two main components: clients and the FL server. Clients are
data owners that participate in a particular round of the FL
training process. The FL server is the global model owner.

Training multiple clients through an FL system occurs
in synchronous rounds and is a three-step process. In the
first step, the server decides the training task, i.e., the global
model configuration and the data requirements, and defines
the hyperparameters of the training process, e.g., local epochs,
learning rate, optimizer. Then, it broadcasts the task and the
initial global model weights to the participating clients. The
participating clients are decided by the server at the beginning
of each training round from a pool of clients and can differ in
each round. Following this, in the second step, each partici-
pating client uses its local data to update the model weights
according to the specified task parameters. Each client trains
a local model for the specified number of local epochs using
the specified optimizer and learning rate. The updated local
model weights are subsequently sent back to the server. Fi-
nally, in the third step, after receiving the updated weights
from all the participating clients, the FL server aggregates
them and sends the updated weights back to the clients par-
ticipating in the next training round. Steps 2-3 are repeated
until the desired accuracy on the test set is achieved or after
a specified number of global epochs. In this work, we use
the federated averaging (FedAvg) algorithm [15] for weight
aggregation in the FL server.

2.2 Function-as-a-Service Fabric

FaaS provides an attractive cloud model in which the user
is not responsible for server deployment and infrastructure
management, but only for writing the code and packaging
it. The user implements fine-grained functions connected in
an event-driven application and deploys them into a FaaS

Figure 1. Combination of three FaaS platforms deployed on
heterogeneous devices.

platform [23]. The FaaS platform isolates the users func-
tions in ephemeral, stateless containers and is responsible for
providing resources for function invocations and automatic
scaling. Several open-source and commercial FaaS platforms
such as OpenWhisk [20], OpenFaaS [19], AWS Lambda [11],
and Google Cloud Functions (GCF) [8] are currently avail-
able. For commercial cloud providers, the application cost
depends on the number of function invocations, memory allo-
cated to the functions, and duration of the function per 100ms.
Functions can be invoked through a user’s HTTP request or
custom events created within the FaaS platform. We term a
combination of these FaaS platforms deployed on heteroge-
neous devices and capable of invoking each other’s functions
as Funtion-as-a-Service fabric. In this work, we utilize three
FaaS platforms, i.e., OpenWhisk, OpenFaaS, and GCF, shown
in Figure 1 as FaaS fabric.

3 Serverless FL Implementation

In this section, we present the overall architecture of our
tool FedKeeper along with the FL workflow. In addition, we
describe the details about the experimental setup for demon-
strating FL over Faas fabric.

3.1 FedKeeper

FedKeeper1 is a client-based python tool for propagating
FL-client functions over FaaS fabric. It’s main objective is
to act as a manager or keeper of various client functions
distributed over different FaaS platforms. It has the following
responsibilities:

• Facilitating the automatic creation, deletion, and invo-
cation of FL-client functions for each FaaS platform.
FedKeeper is integrated with the APIs and SDKs of
each FaaS platform used in this work.

• Resiliency for FL-client functions. FedKeeper keeps
track of the functions running on each FaaS platform us-
ing activation IDs and automatically creates or invokes
the functions which have stopped or failed.

It consists of several sub components, i.e., Client Register,
Weights-Updater, Client-Invoker and the FL-Server. Each
1https://github.com/ansjin/fl_faas_fabric
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Figure 2. High-level architecture for Federated Learning over
FaaS Fabric.

component is a function with a memory size of 128MB, 1GB,
128MB, and 128MB respectively. All the functions have a time-
out of 300 seconds and their functioning is described in Sec-
tion 3.3.

3.2 Experimental Setup

In this work, we utilize a combination of three FaaS plat-
forms, as described in Section 2.2. We deploy OpenWhisk
on-premise over a one-node Kubernetes cluster. The node
consists of two sockets, comprising of Intel Xeon Gold 6238
processors (Cascade Lake-SP), with 22 cores each and a to-
tal of 754GB of main memory. OpenFaaS is also deployed
on-premise on an edge cluster comprising of three embedded
Nvidia Jetson Nano devices [18]. We utilize k3s [21], a light
weight version of Kubernetes to host a cluster on the edge
devices. We chose OpenFaaS as the FaaS platform since it
provides binaries for ARM processors and because it was
not possible to run the heavy footprint OpenWhisk on these
boards due to the availability of limited resources. For creat-
ing FL-clients on the Google cloud that can be accessed over
the internet, we use GCF.

3.3 Serverless FL Worklow

Figure 2 gives an overview of the interaction between differ-
ent sub-components of FedKeeper and the three FaaS plat-
forms in the FL training process. Currently, we assume that
the code for the model to be trained is present for each client
and is consistent with the model selected by the FL-Server for
training. We were able to run the framework Tensorflow [1]
on all three FaaS platforms. This simplifies the implemen-
tation of different models for training. However, due to it’s
heavy footprint we configured each FL-client with a memory
size of 2GB and timeout of 300 seconds. Initially, FL-client
functions are created by FedKeeper across FaaS platforms.

On creation of the clients by FedKeeper, created client IDs,
URLs through which they can be invoked, access authenti-
cation required for their invocations, and the FaaS platform
on which they were created is stored inside the local Mongo
database instance by the Client Register sub-component. At

Listing 1. Example parameter configuration file required for
invoking a client.

1 { " c l i e n t _ i d " : 0 ,
2 " c l i e n t _ t y p e " : " edge " ,
3 " u r l " : " c l i e n t i n v o c a t i o n u r l " ,
4 " m o d e l _ c o n f i g u r a t i o n " : {
5 " mode l_ type " : " nn "
6 " i n p u t _ s i z e " : 784 ,
7 . . .
8 } ,
9 " d a t a _ l o c " : " t r a i n i n g d a t a l o c a t i o n " ,

10 " t r a i n i n g _ h y p e r p a r a m e t e r s " : {
11 " o p t i m i z e r " : " adam " ,
12 " b a t c h _ s i z e " : 10 ,
13 " l o c a l _ e p o c h s " : " 5 " ,
14 " l e a r n i n g _ r a t e " : " 1e−3 "
15 . . .
16 }
17 }

the beginning of the training process, the FL-Server decides
the model to be trained, i.e., model_configuration and the
specific parameters related to it such as input size, output size,
etc. After selection of the model, the FL-Server also initializes
it and stores initial model weights in the local object store. It
also decides the hyperparameters for the training process such
as optimizer, learning rate, etc. Following this, it generates
a configuration file for each client, an example of which is
shown in Listing 1. For the FL-clients present on-premise,
we stage the training data locally in the file system on each
individual device. On the other hand, for FL-clients present
on the Google cloud the training data is stored in each clients
corresponding cloud storage bucket. Note that, no other client
has access to the data in the bucket apart from the client re-
sponsible for it. The generated configuration file is used by the
Client-Invoker for the invocation of different FL-clients. De-
pending on the FaaS platform, i.e., the client_type and the
number of clients in the FL training round, the Client-Invoker
creates invoker-functions within the OpenWhisk platform.
These functions are responsible for the invocation of each
FL-client in the communication round through their url.

To execute FL-clients in parallel, we do a one-to-one map-
ping between invoker-functions and the clients. This means
that the slowest client will determine the overall time re-
quired for the training process. The invoker-functions are
also responsible for reading the current model weights from
the local object store and forwarding them to the clients.
On invocation, the clients compile the model depending on
the specified model_configuration, set the model weights
to the passed values, and update the model weights accord-
ing to the specified hyperparameters. Following the comple-
tion of training for a client, it returns the updated weights
back to the invoker-function. The invoker-function updates
the weights in the local object store, according to its id and
notifies the Weights-Updater for its successful completion.
Weights-Updater keeps track of the clients which have com-
pleted training. If any invoker-function returns an error to the
Weights-Updater, then the corresponding client is invoked
again by the Client-Invoker. Note that, for momentum based
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optimizers such as adam, nadam, the current state of the opti-
mizer is also returned by the client, updated in the local object
store, and passed to the client in the next round. On successful
completion of all invoked clients, the Weights-Updater ag-
gregates the clients weights, stores the aggregated weight in
the local object store, and informs the FL-Server for the com-
pletion of a training round. The FL-Server repeats the above
process, i.e., invocation of clients and updation of weights
until a desired accuracy on the test set of a particular training
task is achieved.

4 Experimental Results

In this section, we demonstrate the functioning of FedKeeper
for FL with an image classification task. First, we describe the
used neural network architectures and the data distribution
strategy across clients. Following this, we present conver-
gence results with a varying number of clients, different sto-
chastic optimizers, and local computation. Finally, we present
performance results across communication rounds.

4.1 Neural Network Architecture and Data

distribution

We utilize the MNIST digit recognition dataset [12] and use
two different network architectures. First, a 2-layer fully con-
nected neural network (NN) with 500 neurons. Second, a
convolutional neural network (CNN), with two convolutional
layers of kernel size 5x5, followed by a fully connected layer
with 512 neurons, and a final output layer with ten neurons.
Moreover, each convolutional layer is followed by a max
pooling layer of size 2x2. For both network architectures, we
utilize categorical cross entropy as the loss function and use
Rectified Linear Units (ReLU) [16] as activation functions in
the convolutional and hidden layers. Furthermore, we do not
use zero padding resulting in 397,510 and 582,026 number
of trainable parameters for the two networks respectively.

Similar to [15] and to conform with the non-iid property of
data in the FL environment, we first sort the MNIST training
dataset with respect to the digit label and then partition it into
200 shards with each shard containing 300 images. Following
this, we randomly select and distribute two shards to each
client resulting in a maximum of 100 clients for the training
process. Out of the 100 clients, we deploy three clients on
the edge cluster, i.e., one on each edge device, seven on the
OpenWhisk cluster, and 90 on GCF. The data is staged for
each individual client as described in Section 3.3.

4.2 Increasing parallelism and local computation

We experiment with the number of clients involved in the FL
training process, use of different stochastic optimizers, and
the effect of increasing local computation in the participating
clients. In all cases, the training task is initially decided by the
FL-server as described in Section 3.3. We use three stochas-
tic optimizers: SGD, Adamand Nadamin our experiments.

(a) CNN, with 5 local epochs (b) CNN, with 10 local epochs

(c) NN, with 5 local epochs (d) NN, with 10 local epochs

Figure 3. The number of communication rounds required
for reaching 99% and 97% test set accuracy on the MNIST
dataset for the two different architectures with a varying num-
ber of clients, different local computation, and optimizers.

Through a grid search, we found the best learning rates for
the three optimizers to be 0.1, 1e-3, and 1e-3 respectively.
For the two architectures, i.e, CNN and NN we measure the
number of communication rounds required to reach an ac-
curacy of 99% and 97% on the MNIST test dataset. In all
our experiments, we fix the batch size to ten and average the
results over five runs of the FL training process.

Figure 3 shows the communication rounds required by the
two network architectures for different number of clients and
with 5 and 10 number of local epochs. For both network ar-
chitectures, we observe that increasing the number of local
epochs leads to faster convergence for a given number of
clients and an optimizer. For the CNN network architecture
with optimizers adam and ndam, we observe a decrease in
the number of communication rounds required to reach the
desired test accuracy with an increase in the number of partici-
pating clients as shown in Figures 3a and 3b. With SGD as the
optimizer, the number of communication rounds required for
convergence first decreases as compared to 10 clients but then
increases for 70 and 100 clients. A possible explanation for
this could be that the initialized learning rate is not optimal
for vanilla-SGD. For 5 local epochs with 100 participating
clients, we observe a speedup of 2.25x, 2.75x, and 1.14x
as compared to 10 clients for the optimizers adam, nadam,
and SGD respectively. With 10 local epochs the speedup ob-
served is 2.66x, 2.47x, and 1.46x for the three optimizers
respectively. For the CNN network architecture, the optimiz-
ers adam and ndam lead to faster convergence than vanilla
SGD in all cases.

In contrast to the CNN network architecture, we do not
observe a monotonic decrease in the number of communica-
tion rounds required for convergence for the NN model with
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(a) CNN (b) NN

(c) CNN (d) NN

Figure 4. The test set accuracy on the MNIST dataset and
the average time across each communication round for the
two network architectures for 100 clients, with different local
computation and adam as the optimizer.

increasing number of clients as shown in Figures 3c and 3d.
For 5 local epochs, we observe a maximum speedup of 2x
(50 clients), 1.64x (50 clients), and 1.23x (100 clients) for the
optimizers adam, nadam, and SGD as compared to 10 clients.
With 10 local epochs, the maximum speedup observed is 3.2x
(70 clients), 2.74x (50 clients) and 1.41x (70 clients) for the
three optimizers respectively. In comparison to [15], for 100
clients and 5 local epochs, the usage of adam and ndam as
optimizers leads to a speedup of 2.1x and 1.8x as compared
to SGD with optimized learning rate. This can primarily be
attributed to the faster convergence properties of momentum
based optimizers such as adam and ndam.

4.3 FedKeeper Performance

Fig 4 shows the accuracy, average time over communication
rounds of the FL training with 100 clients for the two network
architectures. The red lines in Figures 4a and 4b represent the
number of communication rounds required for reaching 95%
accuracy on the test set. For the CNN architecture, 95% accu-
racy is reached after 13 communication rounds for both 5 and
10 local epochs. On the other hand, for the NN architecture,
the desired accuracy is reached after 31, 91 communication
rounds for 10 and 5 local epochs respectively. Such an analy-
sis can be useful for trade-off between reaching a desired test
accuracy versus overall time required for the training.

For the two network architectures, we observe an average
time per communication round to be 60.41s, 41.45s for 5
local epochs and 61.67 and 40.28 for 10 local epochs with
FedKeeper. In all scenarios, the performance per round is not
constant and varies as shown in Figures 4c and 4d. This can
be attributed to the performance variation in clients hosted on

Figure 5. Time distribution for the two network architectures
for 100 clients with 5 local epochs and adam as the optimizer.

the GCF. The time required for the first communication round
is significantly higher as compared to subsequent rounds. This
is due to the cold start of functions [9]. Figure 5 shows the
distribution of time for the first and subsequent communica-
tion rounds for the two network architectures with 5 local
epochs. Invocation and Invocation start time represent the
time required for invoking all participating client functions
and the time required for all invoker containers in the FL-
server to start respectively. Clients start and training time
represents the time required by participating clients to start,
train and return the updated weights back to the FL-server
while Training time only represents the time required by par-
ticipating clients to train and return the updated weights back
to the FL-server. Finally, Aggregation start and Aggregation
time represents the time required for the Weights-Updater
container to start and average the updated weights from the
participating clients. Note that, Invoker start, Clients start and
training time, and Aggregation start times are present only in
the first iteration, due to cold start. The average aggregation
and training time for the CNN architecture are more than the
NN architecture since they depend on the number of trainable
parameters in the model.

5 Related Work

Serverless computing is an emerging paradigm which has
been shown to support a wide variety of applications such as
map/reduce-style jobs [10], linear algebra computation [22],
and even applications with performance guarantees [17]. Pre-
vious work has also shown how distributed ML training can
be supported using serverless functions [3]. Carreira et al. [3],
propose Cirrus, a framework to support tasks in ML work-
flows such as preprocessing of data, model training, and hy-
perparameter optimization. In contrast to our work, it only
supports homogeneous commercial cloud platforms such as
AWS Lambda. Morevover, it’s worker runtime does not sup-
port popular ML frameworks such as Tensorflow [1], which
makes the implementation, integeration, and training of dif-
ferent models in Cirrus difficult for the user.
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While most previous work has focused on execution of
serverless functions on homogeneous systems, Chard et al. [4]
propose funcX, a distributed function execution platform that
supports various cloud platforms and modern HPC systems
with underlying heterogeneous compute nodes. In contrast
to our work, funcX does not support synchronous training of
ML models, and is specifically designed for scientific com-
puting. To the best of our knowledge no previous work in
literature has used serverless functions for distributed FL over
heterogeneous FaaS platforms.

6 Conclusion and Future Work

We demonstrate that federated learning can be performed on a
FaaS-based environment consisting of heterogeneous devices.
The computational capabilities of the devices present in the
FaaS fabric can be used to optimally schedule FL-based client
functions for achieving higher performance. We presents Fed-
Keeper for efficiently managing FL over heterogeneous FaaS
platforms. Our contributions are:

• Manageability: FedKeeper offers easy creation, dele-
tion and invocation of FL-clients.

• Simplicity: Model training on individual clients is done
using fine-grained FaaS-based functions.

• Scalability: FedKeeper offers the capability of running
client functions remotely on Cloud FaaS platforms.

In future, we plan to extend the FedKeeper to other FaaS
platforms and add security related aspects in it. Furthermore,
we will explore techniques to optimize the performance of
running client functions in parallel.
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