Estimating the Capacities of Function-as-a-Service Functions

*This is the preprint version of the accepted paper at CloudAM’21 workshop (UCC)

Anshul Jindal
Technical University of Munich
Garching (near Munich), Bavaria, Germany
anshul jindal @tum.de

Shajulin Benedict
Indian Institute of Information Technology
Kottayam, Kerala, India
shajulin @iiitkottayam.ac.in

ABSTRACT

Serverless computing is a cloud computing paradigm that allows
developers to focus exclusively on business logic as cloud service
providers manage resource management tasks. Serverless applica-
tions follow this model, where the application is decomposed into a
set of fine-grained Function-as-a-Service (FaaS) functions. However,
the obscurities of the underlying system infrastructure and dependen-
cies between FaaS functions within the application pose a challenge
for estimating the performance of FaaS functions. To characterize
the performance of a FaaS function that is relevant for the user, we
define Function Capacity (FC) as the maximal number of concurrent
invocations the function can serve in a time without violating the
Service-Level Objective (SLO).

The paper addresses the challenge of quantifying the FC individ-
ually for each FaaS function within a serverless application. This
challenge is addressed by sandboxing a FaaS function and building
its performance model. To this end, we develop FnCapacitor — an
end-to-end automated Function Capacity estimation tool. We demon-
strate the functioning of our tool on Google Cloud Functions (GCF)
and AWS Lambda. FnCapacitor estimates the FCs on different de-
ployment configurations (allocated memory & maximum function
instances) by conducting time-framed load tests and building various
models using statistical: linear, ridge, and polynomial regression, and
Deep Neural Network (DNN) methods on the acquired performance
data. Our evaluation of different FaaS functions shows relatively
accurate predictions with an accuracy greater than 75% using DNN
for both cloud providers.

CCS CONCEPTS

» Computer systems organization — Cloud computing.

KEYWORDS

Serverless Computing, Function-as-a-Service, Function Capacity

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

Conference’l7, July 2017, Washington, DC, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. .. $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Mohak Chadha
Technical University of Munich
Garching (near Munich), Bavaria, Germany
mohak.chadha@tum.de

Michael Gerndt
Technical University of Munich
Garching (near Munich), Bavaria, Germany
gerndt@in.tum.de

ACM Reference Format:

Anshul Jindal, Mohak Chadha, Shajulin Benedict, and Michael Gerndt. 2021.
Estimating the Capacities of Function-as-a-Service Functions: *This is the
preprint version of the accepted paper at CloudAM’21 workshop (UCC). In
Proceedings of ACM Conference (Conference’l7). ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

With the advent of Amazon Web Services (AWS) Lambda in 2014,
serverless computing has gained popularity and more adoption in
different application domains such as machine learning [6, 8], lin-
ear algebra computation [10, 29], and map/reduce-style jobs [22].
Function-as-a-Service (FaaS), a key enabler of serverless computing,
allows a traditional application to be decomposed into fine-grained
functions that are executed in response to event triggers or HTTP
requests on a FaaS platform [7]. The FaaS platform is responsible
for deploying and providing resources to the FaaS functions.

Since serverless computing environments abstract the underlying
system infrastructure configurations away from the users, most of
the public cloud providers in their FaaS offerings allow users to
configure only a small set of configuration parameters: memory allo-
cation and the maximum number of function instances, also called as
concurrency [1-3]. Moreover, cloud providers speedup function exe-
cution when a higher memory is configured [25]. Furthermore, the
heterogeneity in the underlying nodes can lead to variations in the
execution time of the FaaS functions [9, 18]. Therefore, estimating
the maximum number of requests the deployed functions can handle
such that the response times adhere to the SLOs constraints poses a
set of challenges. Towards this, we define the maximal number of
concurrent invocations that a FaaS function can serve within a time
interval without violating the SLOs when deployed with particular
memory configuration and fixed maximum function instances as
the Function Capacity (FC). In this paper, we consider the 957
percentile execution time of a FaaS function as the SLO.

To highlight the effects of various parameters configuration on
the performance and the Function Capacities of FaaS functions,
we deployed a compute-intensive (calculates prime numbers till
10000000) serverless function written in Python on AWS Lambda
and Google Cloud Function (GCF) [3]. We fixed the 95 h percentile
execution time of the function to 20 seconds. Figure 1a shows how
the Function Capacity (i.e., the maximum number of requests per
second the function can handle) first increases with varying memory

https://orcid.org/0000-0002-7773-5342
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

B 40 - AWS S oo - 1814 -e- AWS 3 20071 -e- AWS-1024MB
a 7 7 \ o

4 -4~ GCF / T 6] e -4- GCF & 17.5] - AWS-2048MB
x 35 / S N\ -4- GCF-1024MB
3 /e i 3 \ S 15.0

£, ey o 9141 A\ = 1507 -a- GCF-2048MB
- s ~a [} W\ <

25 A o 12 N z1s

2 ‘ £ 10 NAel A € 1001

g 20 7 c g . ittt P S

o % § N O 7.5+

s)z 56 . 5 5o

B 10 s o . B

< e o o4 S 25

-
L 51« 2 et @-—=== - [0.0
256 512 1024 2048 4096 8192 256 512 1024 2048 4096 8192 Ts 10 20 30 40 50

Allocated Memory (MB)

Allocated Memory (MB)

Function Concurrency

(a) Effect of memory on the FC with (b) Effect of memory on the with (c¢) Function concurrency effect on

fixed function concurrency of 100.

fixed function concurrency of 100.

the FC with fixed memory.

Figure 1: AWS lambda and Google Cloud Function (GCF) FCs variation with memory configurations, and concurrency.

sizes upto a certain point (2048MB). After that, it becomes constant
when the function concurrency is fixed to 100 for both the cloud
providers. The same Figure 1a also shows the variation in FC with
cloud providers. The variation in the system resources causes differ-
ences in performance between the identical function deployments
for the same FaaS platforms. Figure 1b shows the execution time
of corresponding runs, and one can see that it decreases with the
increase in memory, and after a point (2048MB)), it also becomes
constant. Lastly, Figure 1c shows the linear increase in FC with the
increase in function concurrency, keeping the memory fixed.

The examples above highlight some factors that can affect the
performance and the FCs. However, they are many other factors such
as cold starts, I/O and network conditions, type of container runtimes,
and co-location with other functions affecting the performance and
FCs which the users are not aware of [12, 30]. Additionally, the
dependencies between the functions within a serverless application
can also affect the FCs. To this end, we develop FnCapacitor, a tool
that can estimate the FCs of the functions adhering to the given SLOs,
the specified memory configurations, and function concurrency. Our
key contributions are as follows:

e We develop and present a novel python-based tool called
FnCapacitor for automatic estimation of Function Capacities
of FaaS functions within a serverless application (§3).

e As part of FnCapacitor, we present a functions sandboxing
method which can be used to sandbox individual functions
from the overall serverless application (§3.1).

e We showcase the effect of different deployment configura-
tions : memory allocation (§5.1) and function concurrency
(§5.3), on the Function Capacity for different FaaS functions
within a sample application. To the best of our knowledge,
none of the previous works involving FaaS [5, 11, 20, 24, 28,
30] considered function concurrency parameter.

e Although our approach is generic and FnCapacitor can be
easily extended to support other commercial and open-source
FaaS platforms, we demonstrate the functioning of FnCapaci-
tor with Google Cloud Functions (GCF) and AWS Lambda (§5)
on a sample serverless application consisting of 8 functions.
We further present the performance results of the formulated
FC estimation models on each of them (§5.4).

Faas$ Platform

@ Functon Free Cold Start New
<events> I Invocations Instance 2 instance

@Execute Handler method
Instance

Execution Environment

— [rume]

Function
handler </>

Figure 2: Typical FaaS function invocation procedure.

e We open source the collected data and developed tool for
further research! .

Paper Organization Section 2 introduces the basic FaaS function
invocation procedure and Function Capacity concept. In Section 3
the developed tool FnCapacitor is described. Section 4 describes the
experimental setup and the hyper-parameters of the different algo-
rithms. In Section 5, our evaluation results are presented. Section 6
describes some of the prior works in this domain. Finally, Section 7
concludes the paper.

2 TAXONOMY
2.1 FaaS function invocation procedure

Function-as-a-Service based function is a piece of code containing a
handler method responsible for processing the events that are passed
to the function when invoked and these are executed within a FaaS
platform. FaaS based functions can be invoked by a user’s HTTP
request or another type of event created within the FaaS platform or
the cloud infrastructure. These include changes to data in a database,
files added to a storage system, or a new virtual machine instance is
created. The FaaS platform is responsible for providing resources for
function invocations and performs automatic scaling. This is done
by creating an execution environment which provides a secure and
isolated runtime environment for the function. The functions can be
written using various languages, and a language-specific environ-
ment called runtime is created in the execution environment. The
runtime relays invocation events, context information, and responses
between the FaaS platform and the function.

Thttps://github.com/ansjin/faas_capacitor

https://github.com/ansjin/faas_capacitor

The first time the function is invoked, the FaaS platform creates
an instance of the function (execution environment) and runs its
handler method in it to process the event. When the handler exits or
returns a response, it stays active and becomes available to handle
other events. If the function is invoked again while the first event is
being processed, the FaaS platform creates another instance, and the
two events are processed concurrently. As more events come in, the
FaaS platform routes them to available instances and creates new
instances as needed. When the number of requests decreases, the
FaaS platform stops unused instances to have free scaling capacity
for other functions. FaaS platforms usually have an upper limit on
how many maximum concurrent instances called function concur-
rency can be created, such as 1000 for AWS lambda and 3000 for
GCF. Figure 2 summarizes the overview of the typical FaaS function
request procedure.

2.2 Function Capacity (FC)

We define the Function Capacity (FC) as the maximal number of
concurrent invocations that a FaaS function when deployed on a FaaS
platform with a certain memory configuration and fixed maximum
function instances, can serve within a time interval without violating
the SLOs when deployed. Ideally, if an instance i serves n} number of
invocations within a time interval ¢ and C is the function concurrency
for the FaaS platform, then the FCf, where f is any function, can
be calculated by the equation (1).

FCf=nxC 1)

However, in practice, there are many other factors such as cold
starts, I/O and network conditions, type of container runtimes, and
co-location with other functions affecting the performance and FCs
of FaaS functions [30]. Therefore, we follow a modeling approach
to estimate the capacities of the FaaS functions. In this paper, we
consider the 95 percentile execution time of a Faa$S function as the
SLO.

3 FNCAPACITOR

To estimate the capacities of the FaaS functions within a serverless
application, we have developed FnCapacitor, a python-based auto-
mated end-to-end function capacity estimation tool. Given the SLO
requirements, FnCapacitor is responsible for estimating the FCs
of FaaS functions at different deployment configurations (memory
allocation and function concurrency). Figure 3 provides an overview
of the high-level architecture of FnCapacitor and the interaction
between its components.

FnCapacitor takes a YAML file as input that specifies the initial
FaaS platform configuration parameters (minimum memory alloca-
tion and functions timeout) for the function deployment, serverless
application to be deployed, and configuration parameters for the load
generator and the modeling (step @). Since a serverless application
consists of multiple functions and the performance of one function
could affect the others depending upon it, therefore in the next step,
the individual functions from the given application are segregated
(step @). These sandboxed functions are then deployed on the FaaS
platform with some initial configurations (step @). After the deploy-
ment, FnCapacitor repeatedly changes the functions configurations
(steps @) - 6) and generates a user workload to the function’s API

@ ~ovication developer input configuration fie

,,,,,,,,,,,,,,, l FnCapacitor |_

Functions Sandboxing

lo:;andboxed Functions

@ Functions deployment Functions

Deployer

Functions
Destroyer

Functions
Updater

T @ Functions config update

.
|
|
|
|
|
|
|
|
|
|
|
|
|

@ Funciions invocations]

Updateconfg| 1
and invoke '

K6 Load Generator !

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:

FaaS Functions

Get
data Functions

Getlogs {execution
@ time. memory, active
instances, invocations

Modeler

@ Estimate capacities

Capacity Estimation

Logs, Metrics

Faa$ Platform

Figure 3: High-level architecture of the FnCapacitor.

endpoint (step @) for collecting various monitoring metrics data
(§4.2). The collected metrics data is stored in InfluxDB, which is
used for creating the function performance models (step @). The
created function models are then used for estimating the Function
Capacities for different deployment configurations (step @).

We now describe the sub-components of FrnCapacitor:

3.1 Functions Sandboxing

Usually, a serverless application consists of multiple functions, and
the performance of one function could affect the others depending
upon it. Therefore to measure the pure performance of the functions
i.e., where their performance is not affected by others, we build this
component for sandboxing individual functions through a mockup
of their neighbors. It isolates each function and substitutes its direct
neighbors with dummy functions accepting the requests and sending
the responses in the same format, but without any additional process-
ing allowing to measure the pure performance of only that function
and build models using this data.

Firstly, this component for each function within the serverless
application replaces the calls to other functions with calls to a proxy-
function. This proxy-function serves as an intermediator between
the sandboxed function and other functions and takes the originally
called function names from the sandboxed function and the input
payload to them as the input. This allows every invocation to other
functions to go through this proxy-function and this dummy proxy-
function then will invoke the following functions based on the input
received. At the same time, copies of these requests and responses
are stored in the FnCapacitor’s MongoDB database for creating func-
tion mockups. It is to be noted that, Backend-as-a-Service (BaaS)
services such as database, storage, queues, etc., are out of the scope
of this work for sandboxing as it is assumed that these BaaS ser-
vices provides high scalability and serve the user requests within
the defined SLOs. Following this, each function receives its own
sandboxed deployment where mockup functions replace the direct
neighbors. These mockup functions will respond with the response
stored in MongoDB. As a result, the time taken by the dependent
functions to respond becomes negligible and therefore allows to
build a pure performance model of the functions.

3.2 Function Deployer, Destroyer and Updater

As the name suggests, it is responsible for deploying, destroying, and
updating the functions to be modeled on the GCF and AWS Lambda
using the serverless framework [27]. For deployment and updating,
different configuration parameters: memory configurations and func-
tion concurrency are taken into account. The deployed functions are
scaled automatically by adding multiple function instances by the
FaaS platform. This component automatically deletes the functions
when the test is finished to free up the resources.

3.3 Load Generator

The Load Generator is implemented using a load testing tool - k6. It
uses a script for running the tests where the function endpoint and
request parameters are specified. As part of each test, the number of
requests per second (RPS) generated by k6 is varied and depends
on the number of Virtual Users (VUs) and the time taken by each
request to complete. VUs are the entities in k6 that execute the test
and make HTTP(s) requests. The load generation metrics from k6
and FaaS platform monitoring metrics data from the cloud providers
are exported and stored inside an InfluxDB instance.

3.4 Performance Modeler & Capacity Estimation

This is the main component of FnCapacitor and is responsible for
analyzing the correlation between the different monitoring metrics
(§4.2) and the deployment configurations. It uses the collected data
stored in InfluxDB to create models of the functions and estimate
their Function Capacities. Modeling approaches used in this work
are categorized under two categories:

o Statistical Approaches: We consider linear, polynomial, ridge,
and random forest regression for modeling the relationship.

e Deep Neural Networks (DNNs): DNNs are designed to solve
complex problems by building relationships among multiple
dependent and independent variables. As a result, we use
them for formulating the models.

The collected data from InfluxDB is pre-processed by removing
outliers and dividing the data into training and test set. Following
this, different models, i.e., statistical and DNNSs, are trained on the
training data set. Due to the training data being sparse, k-fold cross-
validation (in our case k=6) is followed for training the model [31].

Lastly, Function Capacities are estimated on the new or test
dataset using the trained models. The prediction accuracy is com-
puted using the R? score value from the actual and predicted Func-
tion Capacities for the test dataset.

4 EXPERIMENTAL CONFIGURATION

In this work, we have fixed the total duration of a test to 30 min-
utes for the deployed serverless application. A test consists of the
memory allocation configurations: <256MiB, 512MiB, 1GiB, 2GiB
and 4GiB> and function concurrency: <10, 20, 30, 40 and 50>.
AWS functions are deployed in the europe-centrall region, and
GCF functions are deployed in the eu-west3 region. The number
of VUs during the load generation are varied from 5 to 500 de-
pending on the number of requests the functions can serve. As
a result, for each function, 5 (total memory configurations) x 5
(function concurrency configurations) = 25 tests were conducted.

Clients

§

|
_. primes- _. nodej.s- sentimer\(-
python = | endpoint analysis
dd cad Ir-prediction | |
compression H

~ 1
Local

Figure 4: High level workflow of the evaluated application.

suogouny

Model and
ataset

We partition the collected data into training and test set (33% of
the total data). We used a part of the training data set as a validation
set for selecting the hyperparameters of the different models. We
select the hyperparameters through an exhaustive grid search. For
the DNN model, we use a 12-layer fully connected neural network
architecture, with each layer having 64 units. We use the Rectified
Linear Unit (ReLU) as activation function [23]. We use mean ab-
solute error as the loss function for training the DNN model with
Adam as the optimizer.

4.1 Application used for evaluation

To investigate the performance of each deployment configuration, we
used a subset of the benchmarks provided with the FaaSProfiler [28].
‘We created an application shown in Figure 4 for our use case. The
functions used as part of this application are summarized in Table 1.

The application flow starts with the nodeinfo function, which
exposes an HTTP endpoint and provides the user with basic informa-
tion about the system such as hostname, underlying architecture,
number of CPUs, etc. This then invokes the compute-intensive
primes-python function to judge the built models’ abilities on
compute-intensive applications, and it further invokes linpack and
dd asynchronously and waits for their response to come back. dd
invokes gzip-compression. It further invokes 1r-prediction in
a sequence. 1lr-prediction queries the model and data from the
google cloud storage (created in the google compute platform in
the europe-west3 region, AWS lambda functions also use this stor-
age bucket) and then performs prediction. Once the response is
available to primes-python function from both the invocations,
it sends back the response to nodeinfo function, which in turn
invokes nodejs-endpoint and nodejs-endpoint further invokes
sentiment-analysis function. We use these eight heterogeneous
functions to test the accuracy of the modeling on different types of
functions.

4.2 Monitoring Metrics

We extracted following monitoring metrics from the GCF and AWS
lambda?® with the data sampling rate as one minute:

e concurrent_instances: Number of concurrent function in-
stances.

e invocations: Number of times the function is executed.

e execution_duration: Amount of time function code spends in
processing an event.

Zhttps:/docs.aws.amazon.com/lambda/latest/dg/monitoring-metrics.html

Table 1: Functions comprising the evaluated application.

° °
o W

Functions Invocations P(90) Execution Time (s)
°

. - I
nmﬂi - Hﬁﬂﬂi | e

nodeinfo sentiment gzip linpack Ir-prediction primes nodejs-endpoint

°
°

Figure 5: execution_durations of the sandboxed functions when
executed with a load of 50 RPS with five different memory con-
figurations and no limit on the function_concurrency.

e memory_usage: Function’s maximum memory usage.

e allocated_memory: Memory allocated to the function.

e function_concurrency: Maximum number of concurrent in-
stances allowed for processing events.

5 EXPERIMENTAL RESULTS

In this section, we first describe the impact of heterogeneity in the
memory allocations on function’s execution_duration and concur-
rent_instances, and then the effect of function_concurrency on the
Function Capacities for both the cloud providers and on different
functions. Following this, we present results of FCs estimation using
the different modeling approaches.

5.1 Memory effect on function execution duration

Figure 5 shows the execution_durations of the load testing of 50
invocations per second on the application when the functions are
sandboxed and deployed with five different memory configurations
on GCF and AWS lambda platforms. We observe the following:
Decrease in execution_duration with the increase in memory
and becoming constant: From Figure 5, we can see that for most
of the functions and across two FaaS platforms, there is a general
trend of decrease in execution_duration with the increase in memory,
and after a certain point (2048MB memory configuration), either
it is becoming constant (for all functions running on AWS, and /-
regression, sentiment, and linpack on GCF) or increasing (for all

Functions Description Runtime
nodeinfo Gives basic characteristics of node like CPU count, architecture, uptime. Node.js 14
primes-python Calculates prime numbers till 100000. Python3
. It solves a dense linear system of equations in double precision and returns the results in
linpack . . . Python3
GFlops. Problem size (number of equations) is fixed to 100.
ad It is based on Unix dd command-line utility for converting and copying files. 128bytes as a Pyvthon3
block size and 5 times conversion is used as parameters. y
. . It first creates a file filled with random numbers of size IMB and then compresses it using
gzip-compression . . Python3
gzip compression scheme.
L It first downloads a linear regression model trained on user reviews data from the storage
Ir-prediction Python3
bucket along with the test data and performs prediction on it.
nodejs-endpoint It is a simple REST endpoint which returns the current time along with the time zone. Node.js 14
sentiment-analysis | Analyzes the sentiment of a provided string using the Python TextBlob library Python3
AWS (Europe-Central-1, 256MB) AWS (Europe-Central-1, 256MB)
06 A =3 AWS (Europe-Central-1, 512MB) L AWS (Europe.Central-1, 512MB)
[0 AWS (Europe-Central-1, 1024MB) 350 [0 AWS (Europe-Central-1, 1024MB)
[= s uropecenrait 2009m8) = A Europeconrol.206005)
0.5 l 3 AWS (Europe-Central-1, 4096MB) 300 I [AWS (Europe-Central-1, 4096MB)
(GCF (Europe-West3, 256MB) GCF (Europe-West3, 256MB)
(GCF (Europe-West3, 512MB) L GCF (Europe-West3, 512MB)
0s =5 Gt e 103011 20 5 Gt (Europe o, 024M8)
= B GCF (Europe-West3, 2048MB) B GCF (Europe-West3, 2048MB)
I B GCF (Europe viest3, 4096M8) B GCF (Europe-West3, 4096MB)

200 =

x
100 I

ﬂﬂm. s, 0 Wm MM HHIH‘D. .Wﬂ-m ij|

nodeinfo sentiment gzip linpack Ir-prediction primes nodejs-endpoint

Average Active Function Instances

°

Figure 6: concurrent_instances of the sandboxed functions for
handling the load of 50 RPS with five different memory configu-
rations and no limit on the function_concurrency.

other functions on GCF). This can be attributed to an increase (2x)
in the number of allocated clock cycles for a memory configuration
of 4096MB as compared to 2048MB [15].

In general, AWS lambda has a lower execution duration for
most of the functions at all memory configurations as compared
to GCF: We can observe from the Figure 5 that, for most of the
functions except the three compute-intensive functions at a lower
memory configuration (256MB and 512M B), AWS lambda process
function events faster than the GCF. For example, for dd microbench-
mark at 256M B configuration, AWS lambda takes 5.2x times less
than the GCF at the same memory allocation, and even it can process
faster than GCF allocated with 4GB. nodeinfo, sentiment, linpack,
and web-endpoint took almost the same amount across different
memory configurations and FaaS platforms.

5.2 Memory effect on function’s concurrent
instances

Figure 6 shows the concurrent_instances per function in the server-
less application when it is load tested with a load of 50 invocations
per second on GCF and AWS lambda platform for five different
memory configurations. We observe the following:

AWS lambda creates more concurrent_instances as compared
to GCF: From Figure 6, we can see that, for most of the functions
and across different memory configurations, AWS creates a higher

dd 70 gzip-compression primes-python linpack
—— GCF —— GCF 200 —— GCF —— GCF
5001 aws 601 — AWS —— Aws 6001 __ aws
2 2 ol 2500
‘G 400 G50 ‘G 150 S
g g g £ 00
40
© © © ©
O 300 o o o
5 5 5 g
5200 g g 5
o Q20 g Q 200
=} =] =] 35
£ 100 T 9 L= “ 100
0 0 0 0
0 20 40 60 0 20 40 60 0 10 20 30 0 5 10 15 20 25
Function Concurrency Function Concurrency Function Concurrency Function Concurrency
sentiment-analysis Ir-prediction nodeinfo nodejs-endpoint
—— GCF 100/ —— GCF 500, —— GCF —— GCF
400 —— AWS —— AWS —— AWS 400, T AWS
oy z Fl 2z
i G 80 ig 400 S
©
%300 % § 300
S 8 60 & 300 8
S 200 5 5 S 200
s 2 w0 £ 200 g
2 g 2 <
3 100 2 20 2 100 100
0 0 0 0
5 10 15 20 0 10 20 30 40 50 10 15 25 50 75 100 125

Function Concurrency Function Concurrency

5
Function Concurrency Function Concurrency

Figure 7: Function Capacity of the functions when deployed on the two FaaS platforms for different function_concurrency with memory

configuration fixed to 256MB.

number of concurrent_instances as compared to GCF for handling
the same amount of load.

Decrease in number of concurrent_instances with the increase
in memory configuration: As the memory is increased for each
function, the number of functions concurrent_instances for both the
FaaS platforms either remain constant or has decreased. This trend
can be attributed to the fact that a higher resource instance can serve
the requests faster and hence can process more requests per unit time.
Therefore, fewer instances are required to handle the same amount
of load when allocated with lower memory configurations.

Slow-processing functions are scaled to higher number of con-
current_instances to match up with the fast-processing functions
: From Figure 5, we can observe that, [r-regression and gzip have the
highest function execution_time as compared to the other functions
and when observing the number of concurrent_instances for those
two functions in Figure 6, we can see that they are the highest. This
concludes that the compute-intensive (slow-processing) functions
require higher scaling to match up the other fast-processing func-
tions to handle the same amount of load. Such visualization can
also be used to understand the bottleneck function in the serverless
application; for example, in our case, it is [r-regression.

5.3 Effect of function concurrency on the FC

Figure 7 shows the actual capacity measurements for the two FaaS
platforms for different function_concurrency configurations with
memory configuration fixed to 256MB for all the functions. The
capacities depicted are the average of the five runs for both FaaS
platforms. In general, it can be inferred that for most of the func-
tions, FCs vary linearly with the function_concurrency for both
the FaaS platforms. Also, a single instance of AWS lambda can
process a higher number of requests than the single instance on
GCF. However, for the two compute-intensive functions namely:

gzip-compression, ml-lr-prediction we see a similar FCs for both
the platforms at different function_concurrency. In case of GCF,
for simple web-based functions : sentiment-analysis, nodeinfo, and
nodejs-endpoint the linear increasing slope is not constant. From
Figure 7, one can see that, for the three FaaS functions the linear
slope changed after function_concurrency of 6. This means that,
after the function_concurrency of 6, each instance can process more
number of requests as compared to the instance used when the func-
tion_concurrency is less than 6. In general, the trend is linear for
all other functions and both FaaS platforms. However, they are not
exactly following the ideal lines. Therefore, one needs modeling
approaches for the estimation of FCs for both the Faa$S platforms.

5.4 Function Capacity estimation

On analyzing the impact of varying memory configurations on
the performance of the different FaaS functions, we use the met-
rics <concurrent_instances, execution_duration, allocated_memory,
memory_usage, function_concurrency> obtained from the collected
load test data as input parameters for the different models (§3.4).
For a given set of input parameters, all models predict <function
invocations> which is equivalent to the FC.

Table 2 shows the comparison of the accuracy results for estimated
FCs for the different modeling approaches (§3.4) with the best ones
underlined for both the Faa$S platforms. For determining the accuracy
of the formulated models, we use the R? score [4].

In general, it was found that the accuracy measurements for Func-
tion Capacity estimation for AWS lambda are higher than the GCF
for most of the FaaS functions since AWS lambda exhibits more
linear behavior as compared to GCF (Figure 7). Linear Regression
(LR) leads to best results when the parameters are linearly corre-
lated to the FC. For most FaaS functions, the parameters are linearly
correlated to FC, leading to an accuracy value greater than 80%.

Table 2: Comparison of accuracy results (R? score) for estimated FCs for the different modeling approaches.

Function LR PLR RR RFR DNN
GCF AWS | GCF AWS | GCF AWS | GCF AWS | GCF AWS
dd 819 981 | 8827 97.7 | 822 980 | 8.5 981 | 91.1 982
gzip 835 914 | 898 948 | 836 914 | 93.0 946 | 93.6 949
primes 758 954 | 786 951 | 764 956 | 831 96.7 | 85.0 96.5
linpack 863 587 | 877 759 | 864 763 | 885 872 | 88.8 924
sentiment | 65.6 33.6 | 729 929 | 522 249 | 76.0 974 | 744 962
Ir-pred. | 909 994 | 93.0 99.5 | 90.7 994 | 954 98.7 | 947 99.5
nodeinfo | 80.6 875 | 884 87.6 | 796 879 | 89.6 882 | 90.2 87.6
endpoint | 77.2 365 | 80.8 679 | 763 357 | 828 810 | 77.8 80.2
e S == e based on the different deployment configurations using GCF and
rodent R AWS Lambda. We present prior work from two aspects:
Ir-prediction o a
sentmentanayss| 1. Tpa HI 6.1 Performance impact of the underlying system
fipack o ™ FaaSProfiler [28] is the first to take a bottom-up approach in ana-
primes:python HOH 0 lyzing the architectural implication to unwrap the server-level over-
geip-compression o heads in the FaaS model. They analyzed the difference between
a9 ol 0 native and in-FaaS function execution and calculated the additional

0
Prediction Accuracy Percentage (for k-folds)

Figure 8: Box plot showing the prediction accuracy on the test
data across k-folds using DNN model for both FaaS platforms.

For both the FaaS platforms, the accuracy for the nodejs-endpoint,
and sentiment-analysis FaaS functions is comparatively less as com-
pared to other FaaS functions since most parameters in them are
non-linearly correlated with FC. Polynomial Linear Regression
(PLR) leads to highly accurate results for most of the function types
due to its ability to model non-linear relations among the parameters.
With PLR, the estimated FC accuracies are higher than the linear
regression, which is attributed to most parameters being non-linearly
correlated. Ridge Regression (RR) produced approximately the
same results as that of linear regression and worked well for cer-
tain function types. On the other hand, Random Forest Regression
(RFR) can provide the best results among the statistical approaches.

The Deep Neural Network(DNN) method outperformed all the
statistical approaches for most of the FaaS functions since it is
capable of modeling the linear and non-linear correlation between
the parameters. For most function types, the FC estimation accuracy
is approximately above 75%. In Figure 8, we show the prediction
accuracy percentage for k-folds in the case of DNN on the test data
using the box plot for both FaaS platforms, and all the FaaS functions.

6 RELATED WORK

FaaS is priced as per the pay-as-you-go model, where they charge
the number of function invocations and memory. The majority of
the prior work is based on optimizing the scalability, cost, execution
time, integration support, and the constraints associated with FaaS
services such as AWS Lambda, GCF, and Azure Functions (AF)
provided by public cloud providers [13, 16, 17, 19, 20]. However,
there is no prior research for quantifying and estimating the FCs

server-level overheads like computational overheads, memory con-
sumption, bandwidth usage, and management overheads like orches-
tration, queuing, scheduling, and power consumed. Furthermore, Lee
et al. [24] compared the performance of various serverless comput-
ing environments offered by public cloud providers by showcasing
the results of throughput, network bandwidth, file I/O and compute
performance on concurrent function invocations. Wang et al. [30]
performed an in-depth study of resource management and perfor-
mance isolation with three popular serverless computing providers:
AWS Lambda, Azure Functions, and GCF. Their analysis demon-
strates a reasonable difference in performance between the FaaS
platforms. Moreover, the deployed function instances are associated
with VMs having a variety of configurations with different under-
lying host micro-architectures. In this work, we showcase a strong
correlation between the function’s performance and the resources
allocated to it based on the different configurations.

Additionally, Figiela et al. [14] developed a cloud function bench-
marking framework. Compute-intensive functions were deployed in
major cloud providers’ FaaS platforms. The authors observe vari-
ation in response time duration based on the different underlying
hardware and runtime environment. These observations encouraged
us to proceed with estimating the FCs of functions when deployed
with different deployment configurations.

6.2 Performance modeling of the FaaS application

Pawlik et al. [26] state that to assess the feasibility of running an
application on the FaaS platform, we have to determine the SLO
of the application. This can be achieved by constructing a reliable
performance model capable of analyzing a function performance,
which requires knowledge about the performance of the infrastruc-
ture. Cloud service providers abstract details such as the number of
cores, memory available, and network I/O capacity in the underlying
hardware, usually limiting the available information to function time
limit, maximum memory. The allocated memory also affects the pro-
visioned CPU quota [25]. In our previous work [21], we developed

a tool for estimating the capacity of a microservice application when
it is sandboxed. We followed the similar approach in this work for
the capacities estimation of the FaaS functions.

7 CONCLUSION AND FUTURE WORK

In this paper, we demonstrated the impact of various configuration
parameters on the Function Capacity of the two FaaS platforms(AWS
Lambda and GCF). The methodology and the tool FnCapacitor
introduced in this paper aim to solve the problem of estimating
the Function Capacity at a specific deployment configuration. In
summary, FnCapacitor can be used in two ways:

e By application developers in an offline manner for estimating
the FCs of FaaS functions within their application for different
deployment configurations. Based on the estimated FCs and
the requirements, the developer can deploy the functions with
the right configurations.

e By application developers in an online manner, the tool col-
lects the monitoring data of the already existing FaaS func-
tions. It automatically builds the models in the background
without additional load testing. The built models can then be
used to update the deployment configurations of the functions
depending on the required SLOs.

In the future, we plan to extend FnCapacitor with other public
serverless compute providers and to open source FaaS platforms.
Creating a function scheduling framework based on the estimated
FCs, the functions can be created with the suitable deployment
configurations is another future direction.

ACKNOWLEDGMENTS

This work was supported by the funding of the German Federal
Ministry of Education and Research (BMBF) in the scope of the
Software Campus program. Google Cloud credits in this work were
provided by the Google Cloud Research Credits program with the
award number NH93G06K20KDXH9U.

REFERENCES

[1] [n.d.]. AWS Lambda, https://docs.aws.amazon.com/lambda/latest/dg/invocation-
scaling.html. Accessed on 09/24/2020.

[2] [n.d.]. Azure Functions hosting options, https://docs.microsoft.com/en-us/azure/

azure-functions/functions-scale. Accessed on 02/18/2021.

[n.d.]. Cloud Functions Overview. https://cloud.google.com/functions/docs/

concepts/overview. (Accessed on 08/22/2020).

[4] [n.d.]. The regression score, https:/scikit-learn.org/stable/modules/generated/

sklearn.metrics.r2_score.html. Accessed on 12/17/2020.

Nabeel Akhtar, Ali Raza, Vatche Ishakian, and Ibrahim Matta. 2020. COSE:

Configuring Serverless Functions using Statistical Learning. In IEEE INFOCOM

2020 - IEEE Conference on Computer Communications. 129-138. https://doi.

org/10.1109/INFOCOM41043.2020.9155363

Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and Randy Katz.

2019. Cirrus: A serverless framework for end-to-end ml workflows. In Proceedings

of the ACM Symposium on Cloud Computing. 13-24.

Paul Castro, Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski. 2019.

The Rise of Serverless Computing. Commun. ACM 62, 12 (Nov. 2019), 44-54.

https://doi.org/10.1145/3368454

Mohak Chadha, Anshul Jindal, and Michael Gerndt. 2020. Towards Federated

Learning Using FaaS Fabric. In Proceedings of the 2020 Sixth International

Workshop on Serverless Computing (Delft, Netherlands) (WoSC’20). Association

for Computing Machinery, New York, NY, USA, 49-54. https://doi.org/10.1145/

3429880.3430100

Mohak Chadha, Anshul Jindal, and Michael Gerndt. 2021. Architecture-

Specific Performance Optimization of Compute-Intensive FaaS Functions. CoRR

abs/2107.10008 (2021). arXiv:2107.10008 https://arxiv.org/abs/2107.10008

3

[5

[6

[7

[8

[9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Ryan Chard, Tyler J. Skluzacek, Zhuozhao Li, Yadu Babuji, Anna Woodard,
Ben Blaiszik, Steven Tuecke, Ian Foster, and Kyle Chard. 2019. Server-
less Supercomputing: High Performance Function as a Service for Science.
arXiv:1908.04907 [cs.DC]

Simon Eismann, Long Bui, Johannes Grohmann, Cristina L. Abad, Nikolas Herbst,
and Samuel Kounev. 2021. Sizeless: Predicting the optimal size of serverless
functions. arXiv:2010.15162 [cs.DC]

Lennart Espe., Anshul Jindal., Vladimir Podolskiy., and Michael Gerndt. 2020.
Performance Evaluation of Container Runtimes. In Proceedings of the 10th In-
ternational Conference on Cloud Computing and Services Science - CLOSER,.
INSTICC, SciTePress, 273-281. https://doi.org/10.5220/0009340402730281
Chen-Fu Fan., Anshul Jindal., and Michael Gerndt. 2020. Microservices vs
Serverless: A Performance Comparison on a Cloud-native Web Application. In
Proceedings of the 10th International Conference on Cloud Computing and Ser-
vices Science - CLOSER,. INSTICC, SciTePress, 204-215. https://doi.org/10.
5220/0009792702040215

Kamil Figiela, Adam Gajek, Adam Zima, Beata Obrok, and Maciej Malawski.
2018. Performance evaluation of heterogeneous cloud functions. Concurrency
and Computation: Practice and Experience 30, 23 (2018).

GoogleCloud. [n.d.]. Cloud Functions Pricing. https://cloud.google.com/
functions/pricing. (Accessed on 08/22/2020).

Jake Grogan, Connor Mulready, James McDermott, Martynas Urbanavicius, Murat
Yilmaz, Yalemisew Abgaz, Andrew McCarren, Silvana MacMahon, Vahid Garousi,
Pooyan Jamshidi, et al. [n.d.]. An analysis of Function-as-a-Service (FaaS):
vendors, challenges and implications for software developers. ([n.d.]).

Anshul Jindal, Mohak Chadha, Michael Gerndt, Julian Frielinghaus, Vladimir
Podolskiy, and Pengfei Chen. 2021. Poster: Function Delivery Network: Ex-
tending Serverless to Heterogeneous Computing. In 2021 IEEE 41st Interna-
tional Conference on Distributed Computing Systems (ICDCS). 1128-1129.
https://doi.org/10.1109/ICDCS51616.2021.00120

Anshul Jindal, Julian Frielinghaus, Mohak Chadha, and Michael Gerndt. 2021.
Courier: Delivering Serverless Functions Within Heterogeneous FaaS Deploy-
ments. In 2021 IEEE/ACM 14th International Conference on Utility and Cloud
Computing (UCC’21) (Leicester, United Kingdom) (UCC ’21). Association for
Computing Machinery, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3468737.3494097

Anshul Jindal and Michael Gerndt. 2021. From DevOps to NoOps: Is It Worth
1t?. In Cloud Computing and Services Science, Donald Ferguson, Claus Pahl, and
Markus Helfert (Eds.). Springer International Publishing, Cham, 178-202.
Anshul Jindal, Michael Gerndt, Mohak Chadha, Vladimir Podolskiy, and
Pengfei Chen. 2021. Function delivery network: Extending serverless
computing for heterogeneous platforms. Software: Practice and Ex-
perience 51, 9 (2021), 1936-1963. https://doi.org/10.1002/spe.2966
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2966

Anshul Jindal, Vladimir Podolskiy, and Michael Gerndt. 2019. Performance mod-
eling for cloud microservice applications. In Proceedings of the 2019 ACM/SPEC
International Conference on Performance Engineering. 25-32.

Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht.
2017. Occupy the cloud: Distributed computing for the 99%. In Proceedings of
the 2017 Symposium on Cloud Computing. 445-451.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2017. ImageNet Classi-
fication with Deep Convolutional Neural Networks. Commun. ACM 60, 6 (May
2017), 84-90. https://doi.org/10.1145/3065386

Hyungro Lee, Kumar Satyam, and Geoffrey Fox. 2018. Evaluation of production
serverless computing environments. In 2018 IEEE 11th International Conference
on Cloud Computing (CLOUD). IEEE, 442-450.

W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara. 2018. Serverless
Computing: An Investigation of Factors Influencing Microservice Performance.
In 2018 IEEE International Conference on Cloud Engineering (IC2E). 159-169.
https://doi.org/10.1109/IC2E.2018.00039

Maciej Pawlik, Kamil Figiela, and Maciej Malawski. 2018. Performance evalua-
tion of parallel cloud functions. Poster Presented at ICPP (2018).

Serverless. 2020. Documentation. https:/serverless.com/framework/docs/. [On-
line; Accessed: 4-Feburary-2020].

Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff. 2019. Architectural
implications of function-as-a-service computing. In Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture. 1063—-1075.
Vaishaal Shankar, Karl Krauth, Qifan Pu, Eric Jonas, Shivaram Venkataraman,
Ion Stoica, Benjamin Recht, and Jonathan Ragan-Kelley. 2018. Numpywren:
Serverless linear algebra. arXiv preprint arXiv:1810.09679 (2018).

Liang Wang, Mengyuan Li, Yingian Zhang, Thomas Ristenpart, and Michael Swift.
2018. Peeking behind the curtains of serverless platforms. In 2018 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 18). 133-146.

Sanjay Yadav and Sanyam Shukla. 2016. Analysis of k-fold cross-validation over
hold-out validation on colossal datasets for quality classification. In 2016 IEEE
6th International conference on advanced computing (IACC). IEEE, 78-83.

https://docs.aws.amazon.com/lambda/latest/dg/invocation-scaling.html
https://docs.aws.amazon.com/lambda/latest/dg/invocation-scaling.html
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
 https://cloud.google.com/functions/docs/concepts/overview
 https://cloud.google.com/functions/docs/concepts/overview
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html
https://doi.org/10.1109/INFOCOM41043.2020.9155363
https://doi.org/10.1109/INFOCOM41043.2020.9155363
https://doi.org/10.1145/3368454
https://doi.org/10.1145/3429880.3430100
https://doi.org/10.1145/3429880.3430100
https://arxiv.org/abs/2107.10008
https://arxiv.org/abs/2107.10008
https://arxiv.org/abs/1908.04907
https://arxiv.org/abs/2010.15162
https://doi.org/10.5220/0009340402730281
https://doi.org/10.5220/0009792702040215
https://doi.org/10.5220/0009792702040215
 https://cloud.google.com/functions/pricing
 https://cloud.google.com/functions/pricing
https://doi.org/10.1109/ICDCS51616.2021.00120
https://doi.org/10.1145/3468737.3494097
https://doi.org/10.1145/3468737.3494097
https://doi.org/10.1002/spe.2966
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2966
https://doi.org/10.1145/3065386
https://doi.org/10.1109/IC2E.2018.00039
https://serverless.com/framework/docs/

	Abstract
	1 Introduction
	2 Taxonomy
	2.1 FaaS function invocation procedure
	2.2 Function Capacity (FC)

	3 FnCapacitor
	3.1 Functions Sandboxing
	3.2 Function Deployer, Destroyer and Updater
	3.3 Load Generator
	3.4 Performance Modeler & Capacity Estimation

	4 Experimental Configuration
	4.1 Application used for evaluation
	4.2 Monitoring Metrics

	5 Experimental Results
	5.1 Memory effect on function execution duration
	5.2 Memory effect on function's concurrent instances
	5.3 Effect of function concurrency on the FC
	5.4 Function Capacity estimation

	6 Related Work
	6.1 Performance impact of the underlying system
	6.2 Performance modeling of the FaaS application

	7 Conclusion and Future Work
	Acknowledgments
	References

