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Abstract—With the introduction of autoscaling, clouds have

strengthened their position as self-adaptive systems. Neverthe-

less, the reactive nature of the existing autoscaling solutions

provided by major Infrastructure-as-a-Service (IaaS) cloud

services providers (CSP) heavily limits the ability of cloud

applications for self-adaptation. The major reason of such

limitations is the necessity for the manual configuration of the

autoscaling rules. With the evolution of monitoring systems,

it became possible to employ the data-driven approaches to

derive the parameters of scaling rules in order to enable the

autoscaling in advance, i.e. the predictive autoscaling. The

change in the amount of requests to microservices could be

considered as a reason to adapt the virtual infrastructure

underlying the cloud application. By forecasting the amount

of requests to cloud application, it is possible to estimate the

upcoming demand to replicate the microservices in advance.

Hence, anticipation of the demand on the cloud application

helps to evolve its self-adaptive properties.

In the scope of the paper, the authors have tested various

extrapolation models on the real anonymized requests time

series data for 261 microservices provided by the industry

partner Instana. The tested models are: various seasonal

ARIMA models with GARCH modifications and outliers detec-

tion, exponential smoothing models, singular spectrum analysis

(SSA), support vector regression (SVR), and simple linear

regression. In order to evaluate the accuracy of these models,

an interval score was used. The time required to fit and use

each model was also evaluated. Comparative results of this

research and the classification of forecasting models based on

the interval accuracy score and model fitting time are provided

in the paper. The study provides an approach to evaluate the

quality of forecasting models to be used for self-adapting cloud

applications and virtual infrastructure.

Keywords-requests forecasting; self-adaptive cloud; microser-

vice; seasonal ARIMA; GARCH; SSA; SVR

I. INTRODUCTION

The most important property of a cloud application is its
scalability. Scalability allows to adjust the cloud application
to the changing amount of requests by adding or removing
virtual machine (VM) with microservices. Recently, the
scaling was also introduced to the serverless architectures
allowing to change the number of replicas of the function
application; for example, Function-as-a-Service (FaaS) of-
fering from Microsoft Azure monitors the rate of events

in order to scale the number of functions horizontally1. In
general, such adjustments can be done either in response
to an observed change in the monitored parameters or by
extrapolating the amount of requests and determining the
necessary number of microservices replicas that could serve
it [1]. The latter path is getting more attention both within the
research community and within the companies. It is known
under the name of predictive autoscaling.

Predictive autoscaling involves two major stages - fore-
casting of cloud application parameters that might be used
to adjust the application, and adjustment of the application
according to the forecast and Quality of Service (QoS)
requirements. The quality of predictive autoscaling heavily
relies both on the accuracy of the forecast and on the
speed of its computation. The number of requests is widely
used as a metric to be extrapolated as this parameter does
not depend neither on the application characteristics nor
on the underlying infrastructure, i.e. it cannot be directly
influenced, e.g. by adding new virtual machines. Preliminary
research shows that requests arrival rate patterns tend to
be less noisy than hardware-relevant metrics, e.g. CPU or
memory utilization. Hence, we focus on the evaluation of
forecasting models used for the prediction of the number of
requests.

A variety of forecasting techniques was already evaluated
in a number of publications. These studies, however, usually
demonstrate at least one of the following weak points: 1)
the lack of comprehensiveness - usually, study focuses only
on two or three forecasting models [2], [3], [4], [5]; 2)
insufficient forecasting models selection and tuning or com-
parison of untuned model with the tuned [6]; 3) strong focus
on the accuracy evaluation omitting the evaluation of time
required to fit the model [2], [3]; 4) use of accuracy metrics
intended for point forecasts which are vaguely relevant for
practice [7], [2], [3], [8]. In the paper, we have tried to
overcome these challenges to establish a solid foundation for
the efficient self-adaptation of the virtual cloud infrastructure
for the demand.

In the next section, we provide an introduction to the
considered forecasting models. The third section of the

1docs.microsoft.com/en-us/azure/azure-functions/functions-scale

https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale


paper highlights the interval score used to evaluate the
presented forecasting models based on the so-called predic-
tion intervals. The fourth section describes the experimental
setting and the implementation of the analysis framework.
Additional information on the interactive forecasting models
evaluation service is also provided in the same section.
The fifth section presents the results of the comparative
forecasting models study pointing at the necessary careful
consideration of the forecasting model depending on the
underlying time series. The sixth section discusses the results
of the comparative study and outlines the directions to
integrate the forecasting models into the predictive autoscal-
ing solutions based on the complex evaluation of accuracy
and performance. Related works studying different workload
forecasting models and techniques are covered in the seventh
section. The last section contains conclusions and future
research directions.

II. FORECASTING MODELS

A. ARIMA and GARCH
The AutoRegressive Integrated Moving Average

(ARIMA) process models a time series, i.e. a sequence
of values of some variable ordered in time. ARIMA can
account for seasonality (SARIMA) and external regressors
(ARIMAX). The generalized SARIMA model for the time
series zt is represented by the equation [9]:
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The ARIMA process establishes the connection between
the time series zt and its previous values using the backward-
shift operator B with modification r, e.g. Bzt = zt�1

and r = 1 � B, and coefficient polynomials �P (BS) and
�p(B) (autoregressive component). The random noise at

is also considered with corresponding coefficients ⇥Q(BS)
and ✓q(B) (moving average component).

The short-hand for the generalized model is
ARIMA(p, d, q) ⇥ (P,D,Q)S . Seasonal and non-
seasonal components in the Equation 1 are represented by
polynomials of B of orders p, q, P , Q. Orders d and D

point to the differentiation of time series in order to get the
stationary time series required by ARIMA process. In case
of non-integer value of d, we deal with the fractionally
integrated (ARFIMA) process [10].

The parameters selection for ARIMA models includes
finding the values of p, q, d, and their seasonal counterparts.
This process is vaguely formalized and mostly encom-
passes residual values evaluation, i.e. a sequence of steps is
conducted to fit ARIMA models with different parameters
values and the difference between the fitted model and the
actual values is compared with the white noise.

The Generalized AutoRegressive Conditional
Heteroskedasticity (GARCH) model describes the variance
of the error term in the source time series model, therefore

this model is useful for time series with changing variance.
The general formula for GARCH(p, q) is [11]:
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GARCH model is useful for time series that exhibit
volatility, e.g. when there occurs an outage followed by
the retry wave. GARCH models can significantly extend
ARIMA models forecasting abilities in case of volatile
time series. In the paper, GARCH was used precisely in
this manner - it was combined with ARIMA models to fit
residuals thereof.

Additional details on the described and following models
are not provided due to space limitation.

B. Exponential Smoothing
The main idea of the exponential smoothing is to approxi-

mate the time series using the exponential window function.
Exponential functions are used to assign decreasing weights
to past observations thus favoring the recent observations
when computing the predictions.

Exponential smoothing includes various models that differ
in type of their components: error, trend, and seasonality.
A trend could either be absent or could be of one of the
following types: additive, additive damped, multiplicative,
and multiplicative damped. Seasonal component also varies
and is usually represented as absent, additive, or multiplica-
tive. R. Hyndman et al. propose to use Akaike Information
Criterion (AIC) to select a specific exponential smoothing
model [12].

Holt’s linear trend method of this class gives the predic-
tion for h steps in the future by linear equation [13]:

ŷt+h|t = lt + hbt (3)

The exponential smoothing is hidden in lt and bt that
determine the level and the trend. Holt-Winters extends
Holt’s method for seasonality in time series.

C. Singular Spectrum Analysis
Singular Spectrum Analysis (SSA) is a non-parametric

method of time series decomposition that obtains spectral
information on time series. SSA algorithm includes four
steps [14]: embedding of original time series into the vector
space of specific dimension; singular value decomposi-
tion resulting in a set of elementary matrices of rank 1;
eigentriple grouping to group elementary matrices; diagonal
averaging to receive the original time series representation
as a sum of reconstructed subseries.

SSA applies the apparatus of linear algebra to time
series in order to receive its decomposition. Consequently
acquiring the covariance matrix for lagged time series,
computing its eigenvalues, eigenvectors, and principal com-
ponents, following with the summation of reconstructed



components, we receive a reconstructed time series. The
results of SSA method are appropriate for forecasting using
the linear homogeneous recurrence relation as was proposed
by Golyandina et al [15].

D. Support Vector Regression

Support vector machines (SVM) were originally created
with the purpose to classify data samples. SVMs are super-
vised learning models. Support vector regression (SVR) is
an extension proposed by H. Drucker et al. [16].

SVR functions by conducting the nonlinear mapping of
the input into a feature space. A linear model is constructed
in the feature space using the supervised learning. This linear
model is given by the equation:

f(x,!) =
mX

j=1

!jgj(x) + b (4)

To learn the model, SVR uses optimization techniques
adjusted by several meta-parameters influencing the quality
of the regression. Wrong selection of these parameters may
result in underfitting or in overfitting.

E. Simple Linear Regression

In seasonal time series analysis, simple linear regression
might be used only as a baseline for comparison with
advanced forecasting techniques. Fitting of such a model
is conducted by minimizing the squared distance between
data points and the model. Graphically, the simplest linear
regression model is represented as a straight line drawn
through the data points.

III. INTERVAL SCORE FOR FORECASTS EVALUATION

Scoring is used to compute a numerical value for a
forecasting model based on out-of-sample prediction results.
This allows to compare each specific model with other mod-
els in respect to accuracy. As the invention of a crystal ball
is still far away, in practice the interval forecast is preferred
over the point forecast. Interval forecasts are based on the
so-called Prediction Interval (PI). PI is an interval which
covers the future observation with a certain probability. In
practice, PIs with the probability of 95% are usually used.
An example of 80% and 95% PIs is provided in the Fig. 1.

In this paper, a negatively oriented interval score [17] was
used to evaluate the forecasts:

S
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This score includes the penalty (u � l) for the wide PI;
↵ is the probability of I type error, 1{y} is an identity
function used to transfer the result of logical expression into

Figure 1. Example of prediction intervals acquired with for monthly totals
of accidental deaths in the USA.

continuous space2. The lower the score is, the more favorable
the evaluated forecasting model is.

IV. EXPERIMENTAL SETTING & IMPLEMENTATION

A. Data & Hardware
The experimental data set provided by company Instana

was cleared prior to experiments and therefore consists of
261 non-zero 4 week-long time series (673 values in each)
with interpolated missing values. These time series were
collected for distinct microservices under the real load.
Each value represents the amount of requests per hour. The
discretion is 1 hour.

The following hardware was used to conduct the tests:
Intel core i7, 2.7 GHz, 16 GiB RAM. The operating system
used is Archlinux (4.12.12-1-Arch).

B. Testing & Analysis Framework
The testing and analysis framework was implemented as

a set of scripts in R. These scripts use the following CRAN
libraries to establish the forecasting functionality: forecast,
rugarch, tsoutliers, arfima, Rssa, e1071. The wrapping script
ForecastingService.R accepts path to the file with the data
set, starting time for the series and type of processing as

2
1{y} can be substituted:
• in case of 1{y < l} by max(sign(l � y), 0);
• in case of 1{y > u} by max(sign(y � u), 0).



parameters and starts model fitting and forecasting. In order
to decrease the overall testing time, multiple cores of the
processor are used to fit the models.

The following models were fitted to each time series:
exponential smoothing, seasonal ARIMA, seasonal outliers-
adjusted ARIMA, seasonal ARFIMA, linear regression,
SSA, and SVR. Each ARIMA-based model was also ex-
tended with GARCH, which gives a total of 10 model
classes which are further simply addressed as models3. The
parameters for all models are selected automatically except
for the pre-selected parameters for SVR model; particularly,
for ARIMA models an implementation of the traditional
Box-Jenkins approach [9] is employed. The implementation
of the corresponding algorithms might be found using the
link to the public repository in section IX.

The time required for parameters selection was not in-
cluded in the duration evaluation as accounting for this
time would significantly penalize the models using machine-
learning techniques and requiring parameters to be set up
prior to learning (e.g. SVR). The selection of such param-
eters is a procedure that is conducted very rarely, therefore
in practice it would not influence the performance of model
fitting in the majority of cases.

For testing and scoring the last 168 values (1 full week
of data points) of each time series were used.

As an output of the testing framework, a table with 261
rows is produced. Each row corresponds to each time series,
and contains the score and the duration for each forecasting
model.

C. Interactive Web Service for Forecasting Models Evalua-
tion

An interactive web application with microservice architec-
ture was developed using Node.js and R to make the fore-
casting user-friendly and easily available. The architecture
of the application is shown in Fig. 2.

User Interface (UI) provides a way to easily configure
different parameters including starting timestamp, i.e. the
timestamp of the first value in the time series, and the
number of prediction steps, i.e. the number of predicted
data points. UI allows the user to either upload and perform
the forecasting with own data or test the service with the
provided sample data. This component is also responsible
for showcasing the forecasting graphs as well as the interval
score and time taken to complete the forecast for all the
models. A set of R scripts is the backbone of the web
application - data cleaning and forecasting logic resides

3Generally speaking, each model class contains multiple models which
differ in parameters used, e.g. the seasonal ARIMA model class in-
cludes seasonal ARIMA(1,0,0,12,1,0,0), seasonal ARIMA(2,0,1,12,1,0,0)
and many more. For each time series only a single model of each class was
selected based on the automated model parameters selection. Therefore,
instead of using ”model class”, the word ”model” is used in the text.
Further evaluation of the model class is based on the evaluation of the
model selected for the given class for each time series individually.

Figure 2. Architecture of the Forecasting Service.

there. A data volume is mounted for storing the uploaded
data. The combination of the UI, R scripts and mounted data
volume makes the forecasting service.

A typical workflow for the forecasting models evaluation
web service includes:

1) storing the uploaded data into the mounted volume;
2) running R scripts for forecasting using the user-

configured parameters and the data path;
3) storing the forecasted results inside InfluxDB for each

model on the fly;
4) storing the interval score and the computation time for

each model inside MongoDB;
5) visualizing the data stored in both DBs by web-UI.
Fig. 3 shows an example for the requests number fore-

casting graph using SARFIMA with GARCH model for 22
prediction steps (hours). The data for the graph was provided
by the industry partner Instana. The depicted lines are:

• SARFIMA+GARCH.av - the actual value;
• SARFIMA+GARCH.ub - the upper bound of PI com-

puted based on the point forecast;
• SARFIMA+GARCH.lb - the lower bound of PI com-

puted based on the point forecast;
• SARFIMA+GARCH.pf - the point forecast.
The graph in Fig. 3 shows that all the actual values of

the request time series are inside the prediction intervals
computed based on point forecasts. Hence, we can assume
that by using the prediction intervals a sufficient coverage
of the possible future values for the number of requests
variable may be reached. The smaller the area between
the upper and the lower bound of the prediction intervals
is, the more accurately an exact position of the predicted
values could be identified. An attempt to make this area as
narrow as possible could lead to some of the values being
outside of the prediction intervals. The case of an actual
value lying above the upper bound could be considered a
significant issue as it implies that the number of requests



Figure 3. Prediction intervals for SARFIMA with GARCH model.

is underestimated and therefore the virtual infrastructure
deployed for the anticipated number of requests will not
be enough.

Despite actual values of the requests time series being able
to fit accurately inside the area between lower and upper
bounds of the predictions in Fig. 3, the prediction intervals
exhibit some redundancy. This redundancy is attributed to
the negative values of the lower bound of prediction intervals
for some of the points. This fact points at the opportunity
to make the prediction interval more accurate integrating the
semantic information about the time series in the prediction.
That way, prediction interval for such characteristics as e.g.
the amount of requests, amount of memory used, should
always stay above zero.

SLA-constraints on the prediction intervals width might
also be introduced as a quality measure for the forecasts. For
example, such constraints might be imposed on the discussed
interactive forecasting service. That way, an additional fil-
tering might be added that provides the forecasts only of
appropriate quality as specified by SLA. As the prediction
interval might extend with the time, the SLA-constraints on
the width of the prediction intervals should increase with
the number of prediction steps for which the forecast is
provided.

V. COMPARISON OF FORECASTING MODELS

Due to the large amount of time series (261, one series
per each service), we won’t discuss distinct forecasts, but
will rather focus on the overall comparison. The comparison
methodology is based on two parameters - model fitting du-
ration and interval score discussed previously. By identifying
these two parameters for the combination of each time series
with each forecasting model (out of 10 listed before), we
receive a total of 2610 points in the two-dimensional space.
A part of these points is shown in Fig. 4.

Evaluating the forecasting models based purely on ac-
quired interval scores, we may note that SARFIMA-based
models jointly outperform other models in almost 51% of all
best cases. The overall rating is provided in Table I. Linear

regression didn’t make it into rating as its interval score was
worst in all the test cases.

Table I
FORECASTING MODELS RATED ONLY BY INTERVAL SCORE

Rank Model Cases % of

with Top Cases

Score

1 SARFIMA with GARCH 79 30.27
2 SARFIMA 53 20.31
3 SSA 31 11.88
4 SVR 31 11.88
5 SARIMA with outliers 25 9.58
6 SARIMA with GARCH 14 5.36
7 SARIMA with outliers 12 4.60

with GARCH
8 SARIMA 11 4.21
9 Exponential Smoothing 5 1.92

Total 261 100

Although the SARFIMA with GARCH modification tops
other models, it is the best model only for slightly more than
30% of test cases as shown in the fourth column in Table I.
When considering the requests forecasting for such highly
dynamic and business-critical entity as cloud, it is important
that the forecasts are produced in time so that the cloud
infrastructure adaptation could still happen in time, before
the request arrive. The consideration of the second evaluation
parameter, namely model fitting duration, becomes necessary
for practical applications.

Fig. 4 presents the zoomed-in version of the interval score
/ duration space for all the test cases with the evaluation
results near the origin (0, 0). As we can see, SARFIMA
and its GARCH-modification which demonstrated the best
interval score for more than half of the time series, do not
appear in the zoomed-in graph. The reason is the highest
model fitting time reaching 253.79 seconds on average for
pure SARFIMA, whereas the graph is limited at around 1.8
s. of model fitting duration (Y-axis). Another coordinate (X-
axis) corresponds to the interval score. As was previously
discussed, the interval score is engineered in such a way that
the lower this score is, the more accurately the forecasted
area covers the future values of the time series. As an
example of reading the graph, we can see that outliers-
adjusted SARIMA demonstrates the score of 0.6408 which is
the lowest score for the 55th time series. Most likely, finding
this single point on the plot would be problematic, therefore
for the sake of analysis the whole space of evaluation points
was divided into 4 subspaces which correspond to evaluation
classes of the forecasting models.

The space is divided into 4 quadrants as is shown in
Fig. 4. These quadrants are determined by two median
values: one for interval scores acquired in tests (4.5958)
- vertical line, and one for model fitting duration (0.8966
seconds) - horizontal line. Each quadrant corresponds to a
single class of models in the scope of test case:

• Class I - appropriate interval score and appropriate



Figure 4. Forecasting Models in Score/Duration Space (zoomed-in)

model fitting duration (both interval score and the fitting
time are less than corresponding median values);

• Class II - appropriate interval score but not optimal
model fitting duration (only the interval score is less
than the corresponding median value);

• Class III - appropriate model fitting duration but not
optimal interval score (only the model fitting duration
is less than the corresponding median value);

• Class IV - worst score and model fitting duration (both
interval score and the fitting time are greater than
corresponding median values).

The relative attribution of the forecasting model to the
specified classes is shown in Figure 5. This plot shows how
many cases of the forecasting model application to the time
series from Instana data set were attributed to one of the
four aforementioned classes.

The selection of the medians as the base for the forecast-
ing models classification allowed to establish the primary
groups of models on average exhibiting the similar qual-
ity characteristics. The selection of these borderlines was
conducted arbitrarily as no domain-specific information was
provided along with the data. The classification borderlines

Figure 5. Relative Presence of Forecasting Models in each Class

might be selected based on the application and domain
specifics, e.g. in the case of strict requirements on the
forecasts accuracy the median value for the score might be
substituted by lower percentile, e.g. 25-percentile.

It is necessary to mention that not all the evaluation points
are provided in the graph. An attempt to visualize all the



points on the same graph leads renders the visualized data
unreadable.

Classes I and II are the most relevant for the practical
use (best interval scores). Rankings inside these classes
are provided in Table II and Table III correspondingly. An
interesting observation follows for Class I which has no
obvious leader - SSA and SARIMA seem to exhibit high
interval accuracy and computation-efficiency. If we recall the
results in Table I, we will see that seasonal ARFIMA model
is more accurate, however it is widely represented only in
Class II (Table III) which implies its slow fitting procedure
thus making its use impractical. High ranks of outliers-
adjusted models in Table III are caused by the presence of
time series with requests bursts in the data set - due to the
inclusion of the terms responsible for capturing the outliers,
these models obtain increased accuracy.

Table II
CLASS I: APPROPRIATE INTERVAL SCORE AND APPROPRIATE MODEL

FITTING DURATION

Rank Method Number % of all

of Cases the cases

in the Class

1 SSA 129 49
2 SARIMA 116 44
3 SARIMA with GARCH 99 38
4 Exponential Smoothing 82 31
5 Linear regression 60 23
6 SVR 32 12
7 SARIMA with outliers 30 11

with GARCH
8 SARIMA with outliers 28 11

The results provided in the Table II show that the linear
algebra (SSA) and simple statistical models (SARIMA)
could be used to achieve both accurate and fast forecasting.
Despite the low ranks of the forecasting models taking the
outliers into account (i.e. aiming to forecast the structural
outliers alongside the general prediction), for certain in-
dustrial cases the ability of the model to take the outliers
into account might be crucial. Hence, the features of the
use-cases should be carefully considered when selecting the
appropriate forecasting model, though the interval accuracy
score and the model fitting time alone can provide an
appropriate evaluation for making the decision about the use
of the specific model in practice.

Additionally, the results of the conducted research (see
both tables) imply that none of the models is equally accu-
rate and fast to compute for every request pattern obtained
for the microservices. This point is especially important in
the light of the diversity of the cloud management activities -
these activities may differ both in the level of the importance
for the cloud user and in the time required to accomplish the
specific activity. Therefore, the requirements on the speed
with which the corresponding management activity gets its
input in the form of the forecast may also differ. The variety
of load patterns also contributes to the requirements imposed

on the forecasting models. That way, it becomes possible
to adapt the selection of the forecasting models for each
specific time series based on its usage requirements and on
the type of the load pattern. A following example could be
provided - the smart scaling of a logging service with a
slowly changing load pattern might be not so demanding
on the speed with which it gets the forecasted number of
requests. In this case, the forecasting model with a higher
fitting time and the higher accuracy could be used. Hence,
the scaling for such a service might be conducted more
accurately, thus fulfilling the demand and at the same time
minimizing the cost. Naturally, other cloud management
activities might demonstrate the near real-time requirements
(e.g. an activity should be conducted in the scope of mil-
liseconds or seconds) or dynamically changing load pattern,
which definitely demands the use of forecasting models with
the lower fitting time. Though, such models might be less
accurate.

The smart cloud operations on distinct microservices
require an individual evaluation of forecasting models. The
minimization of the evaluation activities might be reached
with the generalization of the requests time series to some
common patterns. This approach, however, requires a sig-
nificant amount of data, i.e. at least several months worth of
the data.

Table III
CLASS II: APPROPRIATE INTERVAL SCORE BUT NOT OPTIMAL MODEL

FITTING DURATION

Rank Method Number % of all

of Cases the cases

in the Class

1 SARFIMA with GARCH 156 60
2 SARFIMA 148 57
3 SARIMA with outliers 121 46

with GARCH
4 SARIMA with outliers 118 45
5 SVR 116 44
6 SARIMA with GARCH 45 17
7 SARIMA 25 10

VI. DISCUSSION

Evaluation of the forecasting models both in the dimen-
sion of the accuracy and in the dimension of the time
allows to better select the forecasting models appropriate for
particular use-cases. By including the model fitting duration
in the evaluation, one may determine whether a particular
model would be sufficient for an operation which needs to
be conducted fast, i.e. requiring that the inputs (forecasting
results) are also provided in the timely manner. The accuracy
of the forecasting models evaluated by means of the interval
score is the basic quality metric for the prediction model -
it allows to understand whether a particular model would
provide the sufficient foundation for the accurate decision-
making, e.g. for determining the number of VMs to be



allocated. Looking at both metrics simultaneously, one might
easily identify the models appropriate for the use-cases with
complex requirements.

The metrics set could be extended to deepen the analy-
sis of the forecasting models applicability. By taking into
account the time necessary for identifying the parameters
values for the forecasting models requiring machine learn-
ing, one might easily draw a line between the models that
could only be useful in the cases where the data do not
exhibit frequent changes in patterns and models that do
not require much time to be adapted and thus that could
be useful in such cases. As we have already demonstrated
in the previous section with the SARFIMA-based models,
the high quality of the forecasting model in one of the
dimensions might come at a price in another dimension.
The same applies for the introduction of other possible
parameters of evaluation. For example, in the case of model
parameters identification time the models with the higher
time could exhibit the higher accuracy, though this might
be inapplicable for specific cases with frequently changing
data patterns. Hence, there is no universal parameters set that
could be used for the evaluation of the forecasting models
- such evaluation parameters should be selected for each
particular use-case in advance.

As was previously stated, the predictive autoscaling is
a particular use-case where the forecasting of the requests
amount enables the self-adaptation of the cloud virtual
infrastructure and cloud applications. Such basic evaluation
parameters as the accuracy and the model fitting time could
be considered sufficient in selecting the forecasting model
for the predictive autoscaling as the cloud application type
and underlying business logic are generally unknown. Pre-
liminary collection of the data containing timestamps with
the number of the requests to the microservices enables the
preliminary forecasting model selection based purely on the
batch data. In the case of business-to-customer (B2C) online
services, we could state the presence of the reoccurring
demand patterns which depend on different conditions (e.g.
day of the week, time of the day, national holiday, event,
cloud provider outage). Such a use-case would be ideal
for the batch-based evaluation of the forecasting models
for predictive autoscaling. The stability of patterns implies
that the re-selection of the forecasting model is either not
necessary or should be conducted rarely thus not seriously
influencing the overall performance of the cloud application.

The unstable demand patterns, however, require the fre-
quent adjustment of the model, which could be achieved
by incorporating the new measurements provided by the
monitoring infrastructure into the model. If the amount of
changes becomes high and the initial model cannot reflect
the reality anymore, it is necessary to conduct the forecasting
models evaluation procedure once more. Due to problems
getting the access to production monitoring systems, the
dynamic adaptation of the forecasting models and evaluation

thereof was not widely studied in practice, though some
theoretical models exist [18], [19]. In the following studies,
we aim to address this challenge.

VII. RELATED WORKS

The forecasting of the number of requests to the cloud
services is usually used to derive the number of virtual ma-
chines necessary to meet the anticipated demand thus serving
as a cornerstone of the predictive autoscaling [20], [21]. The
use of the conventional models (e.g. models implemented in
R libraries) does not require extensive discussion, therefore
only some really interesting or even outstanding examples
of forecasting for the self-adaptation of cloud applications
and virtual infrastructure are considered below.

One of the most interesting uses of different forecasting
models was proposed by H. Fernandez et al. The authors
approach the challenge of the requests forecasting model
selection from the point of view of the patterns demon-
strated by time series [22]. In the Predictor component of
the discussed autoscaling system, linear regression is used
to forecast the time series with underlying linear trends,
ARMA is used for linear trends with small oscillations,
exponential smoothing is coupled with daily and seasonal
trends, whereas autoregression and vector autoregression
capture the correlated trends. The pattern-centric approach
to selection of the forecasting model is promising although
such strict coupling of models with patterns might lead to
the inaccuracy in the forecasted values compared to other
models which were not considered for the particular pattern.

The majority of the related works, however, focuses on
the resources parameters forecasting, e.g. CPU utilization,
used memory. Such parameters are usually used as a base
for the smart management of the cloud infrastructure directly
by cloud services providers (e.g. migration of VMs).

M. Barati et al. present a hybrid model combining the
feed-forward artificial neural network (FFANN) for the pre-
diction of the filtered output of highly dynamic CPU utiliza-
tion time series with the GARCH model for the prediction
of the difference of the smoothed time series and the actual
time series [23]. In order to get rid of the oscillating effects
on the CPU utilization measurements, authors propose to
average the measurements. Although such an approach helps
to adapt the data for the forecasting techniques, it also
can damage the accuracy of the technique as the important
outliers could be lost rendering the workload scheduling at
the CSP inaccurate.

J.-J. Jheng et al. have approached the cloud data centers
workload prediction with another forecasting model at hand
- the authors have adapted the Grey interval forecasting
to the data centers workload forecasting followed by the
VM migration [5]. The main objective of the forecasting-
based VM migration is stated as the reduction of the power
consumption at the data center. The work showed the ap-
plicability of the Grey interval forecasting to the prediction



of the workloads - this approach could also be adapted to
the forecasting of the amount of the requests to the cloud
application. The major drawback of the model is, however,
its strong focus at the prediction of the trend which could
also be approached with other techniques or models. The
presentation of the model lacks the comparison with other
commonly known analogues thus leaving the question of
practical usability of the model.

J. Patel et al. have made a contribution into predicting the
CPU load by grouping the CPU utilization time series and
deriving the clusters based on the dynamic time warping
technique [24]. This approach was applied to the Google
trace data. The extraction of clusters was done based on
500 randomly selected tasks of day 18 for this 1 month-
long dataset. The cluster workload pattern was evaluated
based on the time series forming each of 17 clusters derived.
Identification of the pattern close to one of the clusters
allowed to estimate the expected workload for a particu-
lar new task thus enabling the flexible allocation of the
resources. The presented approach could not be considered
as a pure forecasting in the classical sense as it does not
deal with the extrapolation of the time series but rather with
the classification of the time series. Authors have extended
this approach with the multilayered artificial neural networks
used for forecasting of the CPU utilization, thus enabling the
cluster-specific prediction for the resource usage [25]. The
conducted studies have demonstrated the appropriateness of
the combination of clustering techniques with multilayered
artificial neural networks to the tasks of the load forecasting.

The discussed approaches focusing on the prediction of
the resources utilization could be useful when the problem
of efficient resource allocation for virtual machines is con-
sidered by the cloud services provider (CSP). Usually, the
Quality of Service (QoS) is not considered by studies in this
area due to the shifted focus and the lack of user data. This,
and the oscillations in such parameters as CPU utilizations
could be considered as a major limiting factors for works in
this direction.

VIII. CONCLUSION AND FUTURE WORK

In the scope of the paper, 10 forecasting models were
evaluated on the requests time series originating from the 4
weeks of observation conducted on 261 distinct microser-
vices. The evaluation was based on the combination of the
forecasting accuracy interval score with the model fitting
time. The use of the median values for both evaluation
parameters enabled the grouping of the forecasting models
in four classes. Statistical and linear algebra models show
a good compromise of accuracy with the performance on
most of the time series presented in the dataset.

The further analysis showed that the fitting time as the
additional evaluation parameter contributes to the forecasting
models selection when the requirements on the timeliness
of the input parameters for the smart cloud management

activities differ. Introduction of this parameter might lead
to the selection of more accurate forecasting model with
higher fitting time for the cloud management activity that
is conducted once per hour. By including the application-
specific characteristics into the forecasting model fitting
procedure, we might also expect that the self-adaptation of
the cloud applications to the demand will be timely and as
accurate as possible thus ensuring the QoS requirements and
minimizing the cost of the virtual infrastructure.

Further research includes the study of fine-grained pa-
rameters of forecasting models as well as their influence on
the accuracy and the performance of forecasts. The set of
forecasting models might further be extended by inclusion
of LSTM artificial neural networks and of additional hybrid
models. The evaluation of the forecasting models will also
profit from inclusion of the quality estimates that compare
the time necessary for model fitting and forecasting with the
time needed by the cloud services to scale.

Automatic selection and tuning of forecasting models
for cloud operations tasks is yet another research direction
that is tightly coupled with the research advances on other
directions. Last but not least, the significant amount of work
will be devoted to the study of online adaptation of the
forecasting models based on the dynamical data and of the
impact of the models adjusted accordingly on the accuracy
and performance with the real workloads.

IX. AVAILABILITY

The source code for the testing and analysis framework
is available under the following link:

https://github.com/Remit/LPE

The dataset used for the analysis is available per request.
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