
MAFF: Self-Adaptive Memory Optimization for
Serverless Functions

Tetiana Zubko, Anshul Jindal[0000−0002−7773−5342], Mohak
Chadha[0000−0002−1995−7166], and Michael Gerndt[0000−0002−3210−5048]

Chair of Computer Architecture and Parallel Systems,
Technical University of Munich, Garching, Germany

{tetiana.zubko, anshul.jindal, mohak.chadha}@tum.de, gerndt@in.tum.de

Abstract. Function-as-a-Service (FaaS), a key enabler of serverless computing,
has been proliferating, as it offers a cheap alternative for application development
and deployment. However, while offering many advantages, FaaS also poses new
challenges. In particular, most commercial FaaS providers still require users to
manually configure the memory allocated to the FaaS functions based on their
experience and knowledge. This often leads to suboptimal function performance
and higher execution costs. In this paper, we present a framework called MAFF
that automatically finds the optimal memory configurations for the FaaS functions
based on two optimization objectives: cost-only and balanced (balance between
cost and execution duration). Furthermore, MAFF self-adapts the memory con-
figurations for the FaaS functions based on the changing function inputs or other
requirements, such as an increase in the number of requests. Moreover, we pro-
pose and implement different optimization algorithms for different objectives. We
demonstrate the functionality of MAFF on AWS Lambda by testing on four dif-
ferent categories of FaaS functions. Our results show that the suggested memory
configurations with the Linear algorithm achieve 90% accuracy with a speedup
of 2x compared to the other algorithms. Finally, we compare MAFF with two
popular memory optimization tools provided by AWS, i.e., AWS Compute Op-
timizer and AWS Lambda Power Tuning, and demonstrate how our framework
overcomes their limitations.

Keywords: serverless · cost optimization · memory optimization · duration opti-
mization · Function-as-a-Service · memory allocation

1 Introduction

In recent years, the popularity of serverless computing technology has been proliferat-
ing in different domains [13,26,18]. Cloud users profit from the automatic scalability,
faster deployments, and the possibility to outsource control and maintainability over the
underlying hardware infrastructure to the cloud service providers [28,17]. Function-as-
a-Service (FaaS) is a key enabler of serverless computing [29]. In FaaS, a serverless
application is decomposed into simple, standalone functions uploaded to a FaaS plat-
form such as AWS Lambda, Google Cloud Function (GCF), and Azure Functions (AF)
for execution [28]. The pricing is charged based on the number of requests to the func-
tions and the execution duration [10].



2 Zubko et al.

However, while offering many advantages, FaaS faces some challenges that hin-
der its widespread adoption [11,16,27]. While most infrastructure management is ab-
stracted away from the user, major commercial FaaS providers still require users to
manually configure the amount of function memory allocated to the FaaS function [29].
For most developers, this is often done by using their experience and knowledge, lead-
ing to suboptimal function performance and higher function execution costs. Further-
more, the cost of the FaaS function depends on the execution duration of the code and
assigning the smallest or random memory can be considered as an anti-pattern [10,22,15].
Thus, the user has to do a trade-off analysis between them to define the suitable config-
uration for their required SLOs [29], and it’s not trivial to find the optimal configuration
where the overall cost and execution duration are both optimal.

The importance of optimizing memory configuration for the FaaS functions has al-
ready been described in various scientific works and implemented in practice [3,30].
However, the existing tools are either only implemented to be actively invoking the
analyzed functions [12] or require functions to have specific settings and execution fre-
quency to be able to provide the result [9]. To this end, we develop MAFF (Memory
Allocation Framework for FaaS functions), a python-based framework for automati-
cally finding the optimal memory configurations for the FaaS functions. It is imple-
mented in two execution modes – active and passive, depending on the way of how the
function execution information is received. Our key contributions are as follows:

– We develop and present a framework called MAFF that automatically finds the
optimal memory configurations for the FaaS functions (§3). Furthermore, it auto-
matically self-adapts the memory configurations for the FaaS functions based on a
change in the function input or other user requirements.

– We propose and implement three optimization algorithms – Linear, Binary, and
Gradient Descent, for the minimum cost optimization objective, and two optimiza-
tion algorithms – Optimization value, and Duration Change, for the balanced (bal-
ance between cost and execution duration) objective (§2).

– Although our approach is generic and MAFF can be easily extended to support
other commercial and open-source FaaS platforms, we demonstrate the functional-
ity of MAFF with AWS Lambda (§5) on four FaaS functions.

– We compare MAFF with other existing memory optimization tools: AWS Lambda
Power Tuning [12] and AWS Compute Optimizer [9].

2 Methodology

According to business requirements, there are different optimization objectives when
using FaaS functions. For example, it is essential to ensure a quick function execution
in some cases. In other, the balance between the function’s execution and the cost plays
a more significant role. Therefore, we have considered two optimization goals:

– Cost-only: In this case, the users’ primary goal is to minimize the cost of the func-
tion execution even if the duration is not the lowest.

– Balanced: It finds the balance between the cost and execution duration of the func-
tion. Here the goal is to find the best possible performance for a fair cost.



MAFF: Self-Adaptive Memory Optimization for Serverless Functions 3

Algorithm 1: Linear Algorithm
Input: start mem, step size, threshold count, function
Output: min cost mem

1 step count = 0, dur1 = getDuration(function, start mem); // get the duration

2 min cost mem = start mem, min cost dur = dur1;
3 for step count ≤ threshold count do
4 old cost = (dur1 × start mem);
5 new mem = start mem + step size;
6 dur2 = getDuration(function, new mem);
7 new cost = (dur2 × new mem);
8 if new cost > old cost then
9 min cost = min cost mem × min cost dur;

10 if old cost ≤ min cost then
11 min cost mem = start mem;
12 min cost dur = dur1;
13 else
14 step count += 1;
15 end
16 end
17 dur1 = dur2, start mem = new mem;
18 end
19 return min cost mem ; // return the min cost memory

In the scope of this work, we developed multiple algorithms for each of the opti-
mization goals. In the following subsections, we describe each of the algorithms.

2.1 Cost Optimization

Linear Algorithm: The main idea behind this algorithm is to continuously increase
the memory allocated to the function linearly and calculate the cost for each memory
configuration until a memory sweet spot is found where the optimization goal, i.e., the
cost, is minimum. The pseudocode for this algorithm is shown in the Algorithm 1.

By default, it starts at the minimum memory configuration possible in AWS - 128MB
(min mem) and increases the allocated memory with a pre-defined step size of 128MB
(step size). Firstly, the memory of the function is set to min mem and then the execution
duration of the function at that memory is determined (Line 1). We further determine
the cost by multiplying the allocated memory and execution duration at min mem, since
the cost is directly proportional to them [10] (Line 4). We then continuously increase
the function’s memory by step size (Line 5) and determine the new execution duration
of the function at that memory, and then the cost (Lines 6-7). If the cost with the new
memory configuration is smaller than the previous one, the algorithm moves to the next
memory iteration (Line 16). If not (Lines 8-15), the previous memory point is a minimal
cost point, and the algorithm stops. However, in such a case, the algorithm could stop
in the local minima. Thus, the additional logic of overcoming the local minima was
added. The algorithm does not stop execution when the first local minima is found, but



4 Zubko et al.

continues for a few more iterations until a threshold (threshold count) is reached. The
higher the value of the threshold count, the more precise result can be delivered, but at
the same time, more iterations will be performed.

Furthermore, typically the cost of the Lambda function stays the same with mi-
nor fluctuations until some memory level, after which it starts increasing almost lin-
early [20]. Following the Pareto optimization principle, when two memory configura-
tions have the exact cost, a memory with the bigger value is selected, as it positively
affects the function’s execution duration.

Binary Algorithm: This algorithm is based on the classical binary search algo-
rithm, which operates on a sorted list of numbers by iteratively comparing the searched
item to the middle element of the list and eliminating parts in which the searched ele-
ment can not be found. The same principle is borrowed to create this algorithm.

For finding the optimal memory, this algorithm first calculates the execution cost
at the start and the middle memory configurations from the provided memory list. The
user can define the memory list; by default, it is the whole range of memory values
available on AWS (from 128MB to 10240MB) [6]. Suppose the cost at the start memory
configuration is lower than the middle memory configuration. In that case, the algorithm
continues execution on the left part of the memory array (from start to middle), other-
wise on the right part. The stopping criteria for the algorithm is when the memory at
the start of the analyzed memory interval is equal to the memory in its middle, meaning
that the interval consists of only one value.

Gradient Descent Algorithm: This algorithm is based on the popular Gradient
Decent optimization algorithm in Machine Learning. The idea is to continue finding
the minimum of a metric by choosing the direction (left or right direction) towards the
minimum cost at each iteration until the minimum is reached.

In this algorithm, a random memory value from the provided memory list is selected
at which the cost metric is calculated along with the cost of its left neighbor. If the cost
of the neighbor is higher than the cost of the current point, the algorithm continues
execution on the right side of the current point (in the direction of decreasing cost,
otherwise on the left side. The minimum cost is also updated if the current cost is less
than the minimum cost.

The known issue with the Gradient Descent algorithm is that it can get stuck in the
local minimum [24]. To overcome this problem, an additional counter step count was
added. The counter step count is updated when a local minimum is reached. It is used
to control that the algorithm does not stop in the first minimum that it encounters but
continues execution until a threshold threshold count is reached. The neighbors of the
current memory configurations are found by the addition or subtraction of the memory
step size from the current memory value.

2.2 Balanced Optimization:

In the following paragraphs, we describe two algorithms for balanced optimization goal.
Optimization-Values-Based Algorithm: The first approach to finding such an

optimal point is to transform cost and execution duration into percentage format using
the maximum value of cost and duration, respectively. To avoid the exhaustive search of
finding maximum values [12], it is assumed that the function has maximum execution



MAFF: Self-Adaptive Memory Optimization for Serverless Functions 5

duration at the beginning of the memory list (mem con f ig list), i.e., 128MB and the
maximum cost at the end of the list, i.e., 10240MB. The assumption is based on the
fact that increasing the allocated resources does not negatively influence a function’s
performance, but make its execution faster [7,20] by having more underneath resources.

The algorithm starts analyzing memories starting from 128MB and increases mem-
ory allocated to the function with the defined memory step size. For each memory
configuration, the algorithm calculates a value called optimizationValue shown in the
Equation 1. Memory configuration having the lowest optimizationValue is selected as
the optimal memory spot with the balanced optimization goal. As part of Equation 1,
we introduce an additional parameter, α , by which the influence of duration and cost
on the final result can be adapted. The values of the parameter can range between 0
and 1. When α is equal to 0, the algorithm goal corresponds to the cost optimization,
and when the α is set to 1, it will be optimizing the duration. By default, the parameter
value equals 0.5, which means that both cost and duration are equally important, and a
balance between them needs to be found.

optimizationValue =
α ×duration
maxDuration

+
(1−α)× cost

maxCost
(1)

where α is the coefficient for adjusting the influence of optimization variable (cost
or duration) on the final result, and the other variables are self-explanatory from their
names. The algorithm operates similarly to the Linear Algorithm, but uses optimiza-
tionValue as the optimization parameter. It also contains the logic of overcoming local
minimums, as explained in other algorithms.

Duration Change Algorithm: This algorithm is based on the fact that, the opti-
mal memory spot for balanced optimization goal is a point after which any additional
memory increase does not provide any significant performance improvement [14]. So,
the idea of this algorithm for balanced optimization is to incrementally increase a func-
tion’s memory configurations until there is no significant improvement in its execution
duration. In other words, we need to find a vertex of a hyperbola, a point at which the
logarithmic curve of the function’s execution duration bends. This algorithm tries to
find a memory configuration after which the duration curve has flattened, and subse-
quent increases in memory will not significantly improve the function’s performance.

The algorithm operates similarly to the Linear algorithm. By default, the algorithm
starts with memory 128MB and compares execution duration at this point to the execu-
tion duration of the next point on the right side. The memory value of the right neighbor
is equal to the current memory plus the defined memory step size. If the duration of the
right neighbor is decreased by more than the defined change threshold percentage (γ),
the algorithm continues execution for the next iteration; otherwise, execution stops.
The default value of the γ is 10%, the higher the value, the closer the memory will be
selected to the hyperbola vertex.

3 MAFF Framework

In this section, we present MAFF (Memory Allocation Framework for FaaS func-
tions), a python-based framework for automatically finding the optimal memory con-
figurations for the FaaS functions according to the defined optimization goal.



6 Zubko et al.

Fig. 1: High-level system architecture and workflow of MAFF

Figure 1 shows the high-level system architecture of MAFF, its components, and
the workflow between them. All the components are developed in Python and deployed
on AWS infrastructure. On the high level, there are two main approaches for execut-
ing MAFF – active and passive, differentiated by the method of how the function’s
execution information is gathered.

Active Approach: In the active approach, MAFF invokes function by itself. A short
execution log is returned synchronously after each execution. Blue lines in Figure 1
represent interactions between parties when using MAFF in the active approach. As
can be seen, as soon as a trigger event is received by the Functions Analyzer (§3.1)
including the optimization goal (step 1 ), it performs requests to the FaaS function to
find out its execution duration and cost at different memory configurations (step 2 ).
Then it collects execution logs and uses different algorithms described in §2 for finding
the optimal configuration (step 3 ). Once the configuration is found, it is then saved for
the function, and Functions Analyzer stops its execution.

Passive Approach: In the passive approach, MAFF does not send requests to the
analyzed function but relies on the real user’s traffic to receive information about the
function’s execution. In this case, MAFF observes CloudWatch logs, which are gener-
ated by the Lambda function, when users invoke it. The passive approach of MAFF is
developed for such scenarios, where it is not possible or not cost-efficient to actively in-
voke the Lambda function (e.g., if the function creates new products to the online store
or adds the users to the database). When executing MAFF in the passive approach, addi-
tional components such as Start Analysis Event, Functions Collector, Functions Queue,
are used. The flow of the passive MAFF approach is marked with the green lines in the
Figure 1 and starts automatically when the scheduled CloudWatch event containing op-
timization goal is triggered (step 2 ). This event is configured to invoke the Function
Collector Lambda function (step 3 ), which gathers Amazon Resource Names (ARNs)
of stack functions and adds them into an Amazon Simple Queue Service (SQS) queue
(step 4 ). Every new item in the queue is processed by Functions Analyzer Lambda for
finding the optimal memory configuration at the defined optimization goal (steps 5 -



MAFF: Self-Adaptive Memory Optimization for Serverless Functions 7

7 ). If Functions Analyzer can identify the optimal memory for the function, it adds a
record into the DynamoDB database to avoid unnecessary analysis in future iterations
(step 8 ). Notification Sender sends an email notification if the memory configurations
proposed by MAFF are significantly different from the initial configuration (step 9 ).

Both active and passive approaches can adapt memory of the analyzed function in
real-time on AWS Lambda as soon as the optimal memory configuration is found. Such
self-adaptive configuration is performed with the help of AWS SDK for Python (Boto3).
MAFF is a language-agnostic tool, and it can analyze any Lambda function, regardless
of the programming language used for source code.

3.1 MAFF Components

Internally, MAFF consists of several components, each of them is based on a specific
AWS service. In the following subsections, we describe its components in more detail.

Function Analyzer: This component contains the main logic of the MAFF and is
used in both active and passive approaches. In the active approach, Function Analyzer
sends requests to the function to generate execution logs at different memory configu-
rations. In contrast, in the passive approach, it just reads all the function’s logs created
when users invoke the function. Further, it is responsible for analyzing those logs of the
function and selecting its optimal memory configuration based on the given optimiza-
tion goal and the algorithms described in §2. Function Analyzer itself is deployed as a
Lambda function with 512MB memory and 10 minutes timeout. As input, it expects the
Amazon Resource Name (ARN) of the Lambda function to be analyzed.

Start Analysis Event: It is used to invoke MAFF in the passive approach. It is
implemented as a scheduled AWS CloudWatch event rule, which triggers an analysis
process based on the time interval specified by the user (e.g., every four hours).

Functions Collector: It is responsible for gathering ARNs of the functions which
belong to a CloudFormation stack and need to be analyzed. This component is also
implemented as a Lambda function with 512MB memory and 10 minutes timeout. As
input, this function receives the name of the CloudFormation stack.

Functions Queue: It stores the list of functions’ ARNs generated by Function
Collector before they are passed to Function Analyzer. It is implemented with Amazon
Simple Queue Service (SQS) and uses Function Analyzer as a Lambda trigger.

Analyzed Functions Storage: This component stores the past optimal memory
configurations of the functions found in the previous MAFF executions. It is imple-
mented using the AWS DynamoDB database with function name as the primary key.
This component acts as the cache, and if the function optimal memory configuration
exists in the database, then the unnecessary iterations of the algorithm are avoided.

Notification Sender: It sends an email notification if the memory configurations
proposed by the MAFF are significantly different from the initial configuration. By
default, the notification will be sent if the memory selected by MAFF is four times
lower or higher than the initial one.



8 Zubko et al.

4 Evaluation Settings

We test the proposed MAFF framework for FaaS functions deployed on AWS Lambda,
a popular serverless cloud platform. MAFF framework itself was deployed on AWS
lambda as described in §3.1. Each of the algorithms introduced in §2 are executed
5 times on each of four different benchmark functions (§4.1). We also describe the
evaluation scenarios conducted to evaluate MAFF (§4.2).

4.1 Benchmark Functions

In the evaluation, we have considered four types of functions. All of them are imple-
mented in Python 3.8, which is one of the most popular languages used in AWS [28].
Moreover, each function was configured with a three-minute timeout, which allows
them to finish execution with any memory configuration.

CPU-Intensive Function: CPU intensive functions have a logarithmic dependency
between allocated memory and execution duration of the function [14]. For the test pur-
poses of this work, a specimen CPU-bound function was created. It calculates tangent
and arctangent for the numbers between 0 and 87.

I/O-Intensive Function: I/O function used in this work is based on a popular Linux
utility for the file operations - dd [23]. Using dd, an input file /dev/zero is copied to
an output file /tmp/out using 50 blocks, each of 512 bytes size. The file /dev/zero

represents an unlimited flow of null characters.
Memory-Intensive Function: Memory bound function used in this work consists

of a for-loop iterating from 0 to, 100000. Every iteration adds a number to the initially
empty array, thus slowly filling up the memory.

Network-Intensive Function: Here a large JSON file over the Internet is read.

4.2 Evaluation Scenarios

We design our experiments to answer the questions:
Q1. Optimal configuration finding efficiency : how efficient are the MAFF algo-

rithms in finding the optimal memory configurations for various types of functions at
different optimization goals?

Q2. Optimal configuration finding accuracy: how accurate are the MAFF algo-
rithms in finding the optimal memory configurations given the optimization goal?

Q3. Active vs passive approach: how do the two approaches in MAFF compare
against each other in terms of accuracy?

5 Results

In this section, we present the results of the evaluation scenarios described in §4.2.



MAFF: Self-Adaptive Memory Optimization for Serverless Functions 9

CPU-Intensive I/O-Intensive Memory-Intensive Network-Intensive
Function Type

0

10

20

30

40

50

60

Nu
m

be
r o

f i
te

ra
tio

ns

15 16 17

9

64

31

53 53

38

19
22

13

Linear
Binary
Gradient Descent

(a) Number of iterations

CPU-Intensive I/O-Intensive Memory-Intensive Network-Intensive
Function Type

0

100000

200000

300000

400000

Ex
ec

ut
io

n 
Du

ra
tio

n 
(m

s)

196906

9464 12182

43589

447145

18938 21589

168829
156390

5570 5473

41048

Linear
Binary
Gradient Descent

(b) Execution duration

Fig. 2: The required number of iterations and the execution duration of the various al-
gorithms for the cost optimization objective.

5.1 Q1. Optimal configuration finding efficiency

Algorithms are compared based on the number of iterations and time taken by them.
Cost Optimization: Figure 2a shows the number of iterations that each of the algo-

rithms performed to identify optimal memory configuration with the cost optimization
as the minimization objective. For every function type, the Linear algorithm managed
to find a minimal cost point with the least number of iterations. The Binary algorithm,
in all cases, took the most steps to find a memory sweet spot. It can be explained by the
fact that memory points with minimal cost for all function types lay in the region 128MB
- 1280MB. But Binary algorithm was executed on the whole memory range (128MB -
10240MB), which took more steps to narrow the search to the correct memory region.
For every function type, Gradient Descent required more steps than Linear algorithm
and less than Binary algorithm to find the optimal memory spot.

Additionally, from the Figure 2b showcasing the average execution duration of each
algorithm, one can observe that the Binary algorithm has the highest execution duration
for all function types. This also corresponds to the fact that this algorithm requires the
highest number of iterations to find an optimal memory configuration. Linear algorithm
performed better than the Gradient Descent in terms of the required iterations. However,
Gradient Descent algorithm outperformed the Linear one in terms of the execution
duration. For all the functions, Gradient Descent has the shortest execution duration.

Binary algorithm shows the worst results; however, it can be explained by the fact
that optimal memory configuration was located closer to the beginning of the memory
interval. Thus, as the interval for the algorithm execution was wide (128MB-10240MB),
it took many iterations for the algorithm to find the optimal memory configuration.

Balanced Optimization: As it can be seen from Figure 3a, in general Duration
Change algorithm requires fewer iterations to find the optimal memory configuration
compared to the Optimization Value algorithm. The Duration Change algorithm uses
the definition proposed by AWS, which says that the balance between cost and duration
is achieved at the memory, at which the duration curve of the function bends [14]. In
the Optimization Value algorithm, it is assumed that the balance point of the function is
such at which minimal duration can be achieved for the smallest cost, following Equa-



10 Zubko et al.

CPU-Intensive I/O-Intensive Memory-Intensive Network-Intensive
Function Type

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Nu
m

be
r o

f i
te

ra
tio

ns

18

11

13

9
8

4

9

3

Optimization Value
Duration Change

(a) Number of iterations

CPU-Intensive I/O-Intensive Memory-Intensive Network-Intensive
Function Type

0

50000

100000

150000

200000

Nu
m

be
r o

f i
te

ra
tio

ns

215578

7383 10960

53084

154332

3056 4689
15717

Optimization Value
Duration Change

(b) Execution duration

Fig. 3: The number of iterations and execution duration for various algorithms for the
balanced optimization objective.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Iterations

500

1000

1500

2000

M
em

or
y 

(in
 M

B)

OptimalValues
Duration Change

(a) Allocated memory

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Iterations

2000

4000

6000

8000

10000

12000

Du
ra

tio
n 

(m
s)

OptimalValues
Duration Change

(b) Execution duration
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Iterations

2.2

2.4

2.6

2.8

3.0

Co
st

 (i
n 

$)

1e 5
OptimalValues
Duration Change

(c) Execution cost

Fig. 4: Changes in different metrics with the iterations of the three algorithms for bal-
anced optimization objective concerning the CPU benchmark.

tion 1. This algorithm usually selects the higher memory values (on the right side of
the duration curve’s knee). From Figure 3b, showing the average execution duration of
both algorithms, one can observe that, for all function types, the Optimization Value al-
gorithm required more time than the Duration Change algorithm, which is proportional
to the number of iterations required by them.

Furthermore, Figure 4 shows how different parameters (cost, execution duration,
and cost) behave for the CPU benchmark function when executed for the two algorithms
with the balanced optimization objective. The resulting optimal configuration for each
case is highlighted in all the three sub-figures.

5.2 Q2. Optimal configuration finding accuracy

As the duration and cost profiles of every test function are known, optimal memory in-
tervals for each of them are calculated manually (displayed under optimal in Table 1).
Thus, if the algorithm managed to find the memory in the optimal interval, its result is
assumed to be correct. However, in the case of balanced optimization objective, estimat-
ing the correctness of the algorithms is more challenging as there is no clear definition
of the term ”optimal memory spot”. Therefore, we only show accuracy measures for
cost and duration optimization objectives in the below paragraphs.



MAFF: Self-Adaptive Memory Optimization for Serverless Functions 11

Table 1: Memory configurations selected for the cost optimization objective.
Function Type Optimal (in MB) Linear (in MB) Binary (in MB) GD (in MB)
CPU-Intensive <1280 845 1047 900
I/O-Intensive < 1280 794 2071 767

Memory-Intensive < 1152 947 1723 973
Network-Intensive < 256 154 130 370

Cost Optimization: To evaluate the correctness of algorithms, the average result
of their five executions for every benchmark function was calculated and compared to
the correct memory intervals. Due to the variability of a cloud environment and lack of
user control over it, it is hard to predict the exact memory configurations with which
function will be executed with the lowest cost. Thus, based on the data received from
the function’s profiles (§4.1), optimal memory interval is defined as an interval in which
the optimal memory spot can be located. The second column in Table 1 specifies the
optimal memory interval for every function type. The next columns show average mem-
ory levels selected by each algorithm. If the selected memory level by the algorithm is
inside the correct interval, we consider its result to be correct, and the corresponding
table cell is marked green. Otherwise, the result is wrong and marked red.

For all function types, the Linear algorithm output results in the correct memory
interval. Binary and Gradient Descent algorithms managed to find optimal memory
configurations for two and three functions, respectively. To better evaluate the accuracy
of the algorithms for the cost optimization objective, we conducted an experiment where
each algorithm was executed five times for each of the four example functions, so there
are twenty executions in total. The experiment concluded that, Linear algorithm has the
highest accuracy - 95%, Gradient Descent - 85%, and Binary - 55%.

5.3 Q3. Active vs passive approach

As part of this evaluation, we only discuss the results of the balanced optimization goal
deployed with the Duration Change algorithm. Figure 5 shows the scheme of execu-
tion MAFF in the passive approach used as part of this work for evaluation. Four test
functions (CPU-, I/O-, memory- and network-intensive) were deployed in one Cloud-
Formation stack and invoked every 5 minutes by a scheduled CloudWatch Event (Event
A). This event was used to simulate user invocations. After each execution, correspond-
ing log data was generated and stored in the CloudWatch service. In parallel to that,
the analysis process for finding optimal memory configuration was also executed. The
process was triggered by another CloudWatch scheduled event (Event B) with 30 min-
utes intervals. Thus, there were six function executions between every analysis round.
Event B was configured to invoke the Function Collector Lambda function, which gath-
ered ARNs of stack functions and added them into the SQS queue. Every new item in
the queue was processed by Analyzer Lambda, which evaluated execution logs of the
corresponding function. If Analyzer could identify the optimal memory for the func-
tion, it added a record into the DynamoDB database to avoid unnecessary analysis in
future iterations. The whole experiment lasted for 6 hours, during which every of the



12 Zubko et al.

Fig. 5: Scheme of experiment on MAFF in passive approach.

test functions was executed 72 times and the analyzer function 12 times. It was enough
to find optimal memories for all functions in the stack. As expected (Table 2), memory
values selected by both approaches are quite similar, with some minor differences due
to fluctuations in the value of the function’s execution duration.

6 Comparison to Analogs

In this section, MAFF was compared to two popular resource optimization tools: AWS
Compute Optimizer (ACO) [9] and AWS Lambda Power Tuning (ALPT) [12]. All ex-
periments were performed on CPU-intensive function and the optimization objective
was set to cost for MAFF and ALPT. MAFF was configured to use Linear algorithm
for active and passive approaches. Optimization goal cannot be selected for ACO.

Table 2 shows a comparison between MAFF in active and passive approaches to
its two analogs. Optimal memory suggested by the tools is quite different, but for both
MAFF approaches and ALPT, the resulting value lies in the correct memory interval de-
fined in §4.1. Memory suggested by ACO is below the defined interval (initial memory
was set to 128MB). ACO has the most strict requirements for its execution than all other
tools. There must be at least 50 function invocations in the last 14 days, and memory
allocated to the function must not be higher than 1792MB [9]. For MAFF in the passive
approach, the algorithm should have enough log values to perform analysis, and the
number can vary depending on the function.

Execution duration for MAFF (active approach) and ALPT are similar - around 3
minutes per analysis. ACO can take up to 12 hours to find an optimal memory value.
MAFF (passive approach) requires only 12 seconds for execution, on the condition that
enough log values are provided. ALPT uses exhaustive search to identify optimal mem-



MAFF: Self-Adaptive Memory Optimization for Serverless Functions 13

Table 2: Comparison of MAFF to its analogs
M-Active M-Passive ACO ALPT

Suggested Memory 845 896 160 1024
Requirements None approx. 20

function’s
invocations

minimum 50 invo-
cations, less than
1792MB allocated

None

Duration of Analysis 3 min 16
sec

11 sec up to 12 hours 2 min 30 sec

Cost 0.0025 0.0012 0 0.0131
Automatic Value Setup Yes Yes No Yes

ory level for a cost, or execution duration. By default, this tool will need to perform at
least 225 requests to the function to identify the optimal memory point. AWS Compute
Optimizer is provided free of charge, while other optimization tools incur additional
costs. The cost per analysis provided in this table can vary depending on the analyzed
function and amount of steps the algorithm needs to perform, but in general, MAFF in
both approaches is cost-efficient than the others.

While performing experiments on AWS Compute Optimizer, an interesting behav-
ior of the tool was observed. To demonstrate it, a CPU-intensive function was deployed
on four separate Lambda instances in eu-central-1 AWS region. Each of the functions
was allocated different memories: 128MB, 256MB, 512MB, and 1024MB invoked every 5
minutes by the scheduled CloudWatch Event [8]. It was expected that the tool would
suggest one optimal memory for the CPU-intensive function regardless of the initial
memory level with which the function was created, as the application logic and work-
load for all functions is the same. However, after 12 hours of the experiment, AWS
Compute Optimizer suggested different memories for each of the functions. Figure 6
shows the memory values proposed by Compute Optimizer for each function. For all
of them, the tool recommended increasing memory value. Thus, the tool does not sug-
gest the optimal memory configurations but relies on the initial memory allocated and
increases them always.

7 Related Work

With the advent of serverless computing, there is a significant amount of research aimed
at optimizing cloud computing resource utilization [4,3,12,21]. There has been some
work on the performance profiling of various FaaS platforms. Wang et al. [28] per-
formed an in-depth study of resource management and performance isolation with three
popular serverless computing providers: AWS Lambda, Azure Functions, and Google
Cloud Functions. Their analysis demonstrates a reasonable difference in performance
between the FaaS platforms. Furthermore, Shahrad et al. [25] studied the architectural
implications of serverless computing and pointed out that the short function runtimes
hamper exploitation of system architectural features like temporal locality and reuse
in FaaS. Chadha et al. [14] examine the underlying processor architectures for Google



14 Zubko et al.

Fig. 6: Experiment on AWS Compute Optimizer showcasing wrong optimal memory
suggested for the same function allocated with different initial memory configurations.

Cloud Functions (GCF) and determine the optimization of FaaS functions using Numba
can improve performance by and save costs on average.

Furthermore, a significant number of research works aim to optimize the memory
and cost for the FaaS functions. COSE [3] framework finds the optimal configurations
for a FaaS function using the Bayesian Optimization algorithm while minimizing the
total cost of execution. It models the behavior of a function and the environment (cloud,
edge) in which those functions are deployed. However, they optimized based on cost
only, does not guarantee the accuracy of the process, and can only be used in active
mode. Bayesian Optimization was also used in CherryPick [5] tool for creating perfor-
mance models for different cloud applications. The system provides 45-90% accuracy
in finding optimal configurations and decreases cost up to 25%. But, they focused on
traditional cloud applications. Another framework, Astra [19], is designed to optimize
FaaS function configurations for specifically map-reduce usecase.

Google has developed a recommendation system to help the users choose the opti-
mal virtual machine (VM) type [1]. It currently does not support Google Cloud Func-
tions. As discussed in §6, AWS Compute Optimizer [2] can only be executed for the
functions whose allocated memory level is less or equal to 1792MB and invoked at least
50 times in the last two weeks. AWS Lambda Power Tuning [12] tool uses exhaustive
search to identify optimal memory level for a cost or execution duration. AWS Lambda
Power Tuning is quite similar to MAFF in terms of lack of requirements, quick analysis
time, and the possibility to set up recommended memory automatically. But users can
use the AWS Lambda Power Tuning tool only in active mode, which can be impossible
or not recommended for some business scenarios. Thus, the MAFF tool developed in
this work outperforms AWS Compute Optimizer in the time required for the analysis,
and provides a possibility to execute the tool in the passive approach.



MAFF: Self-Adaptive Memory Optimization for Serverless Functions 15

None of the aforementioned research efforts address the issue of automatically con-
figuring the optimal memory of FaaS functions from different objectives. The proposed
tool MAFF fills that gap.

8 Conclusion

Serverless computing has abstracted most cloud server management decisions away
from the users but configuring the memory of FaaS functions: a low-level configura-
tion, which directly influences the performance and cost of the FaaS functions, is still
left up to the users. To solve this problem, we introduced MAFF1 to find optimal mem-
ory configuration for the FaaS function based on two optimization objectives: cost, and
balanced (§2). For cost objective, it was possible to achieve 90% of accuracy using
the Linear algorithm with at least two times smaller number of steps as compared to
others. For achieving the balanced optimization goal, Optimization Value and Dura-
tion Change algorithms were used. We further introduced two different approaches for
performing memory optimization - active and passive, differs based on the method of
collecting the functions execution logs (§3). We also showcase MAFF advantages over
the others in terms of cost and finding the optimal memory configurations (§6).

In the future, we plan to extend MAFF with other public serverless compute providers.
Adding the functionality of tracking updates in the program code of the analyzed func-
tion is another prospect.

ACKNOWLEDGEMENTS

This work was supported by the funding of the German Federal Ministry of Education
and Research (BMBF) in the scope of the Software Campus program. The authors also
thank the anonymous reviewers whose comments helped in improving this paper.

References

1. Google cloud recommendations (2018), https://cloud.google.com/compute/docs/
instances/apply-machine-type-recommendations-for-instances, (Accessed on
06/17/2021)

2. Aws compute optimizer (2021), https://aws.amazon.com/compute-optimizer/, (Ac-
cessed on 06/17/2021)

3. Akhtar, N., Raza, A., Ishakian, V., Matta, I.: Cose: Configuring serverless functions using
statistical learning. In: IEEE INFOCOM 2020 - IEEE Conference on Computer Communi-
cations. pp. 129–138 (2020). https://doi.org/10.1109/INFOCOM41043.2020.9155363

4. Akin, M.: How does proportional CPU allocation work with AWS
Lambda? — Opsgenie Engineering, https://engineering.opsgenie.com/

how-does-proportional-cpu-allocation-work-with-aws-lambda-41cd44da3cac
5. Alipourfard, O., Liu, H.H., Chen, J., Venkataraman, S., Yu, M., Zhang, M.: Cherrypick:

Adaptively unearthing the best cloud configurations for big data analytics. In: Proceedings
of the 14th USENIX Conference on Networked Systems Design and Implementation. p.
469–482. NSDI’17, USENIX Association, USA (2017)

1 https://github.com/tetzubko/self-adaptive-memory-faas

https://cloud.google.com/compute/docs/instances/apply-machine-type-recommendations-for-instances
https://cloud.google.com/compute/docs/instances/apply-machine-type-recommendations-for-instances
https://aws.amazon.com/compute-optimizer/
https://doi.org/10.1109/INFOCOM41043.2020.9155363
https://engineering.opsgenie.com/how-does-proportional-cpu-allocation-work-with-aws-lambda-41cd44da3cac
https://engineering.opsgenie.com/how-does-proportional-cpu-allocation-work-with-aws-lambda-41cd44da3cac


16 Zubko et al.

6. Amazon Web Services: AWS Lambda – Serverless Compute - Amazon Web Services,
https://aws.amazon.com/lambda/

7. AWS: Choosing the Optimal Memory Size - Serverless Architectures with
AWS Lambda, https://docs.aws.amazon.com/whitepapers/latest/

serverless-architectures-lambda/choosing-the-optimal-memory-size.html
8. AWS: Creating a CloudWatch Events Rule That Triggers on a Schedule - Amazon

CloudWatch Events, https://docs.aws.amazon.com/AmazonCloudWatch/latest/

events/Create-CloudWatch-Events-Scheduled-Rule.html
9. AWS: Supported resources and requirements - AWS Compute Optimizer, https:

//docs.aws.amazon.com/compute-optimizer/latest/ug/requirements.html#

requirements-lambda-functions
10. AWS: Aws lambda pricing (2020), https://aws.amazon.com/lambda/pricing/
11. Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S., Ishakian, V., Mitchell, N., Muthusamy,

V., Rabbah, R., Slominski, A., Suter, P.: Serverless computing: Current trends and open prob-
lems. In: Research Advances in Cloud Computing, pp. 1–20. Springer Singapore (2017)

12. Casalboni, A.: AWS Lambda Power Tuning, https://github.com/alexcasalboni/

aws-lambda-power-tuning
13. Chadha, M., Jindal, A., Gerndt, M.: Towards federated learning using faas fabric. In:

Proceedings of the 2020 Sixth International Workshop on Serverless Computing. p.
49–54. WoSC’20, Association for Computing Machinery, New York, NY, USA (2020).
https://doi.org/10.1145/3429880.3430100

14. Chadha, M., Jindal, A., Gerndt, M.: Architecture-specific performance op-
timization of compute-intensive faas functions. In: 2021 IEEE 14th Inter-
national Conference on Cloud Computing (CLOUD). pp. 478–483 (2021).
https://doi.org/10.1109/CLOUD53861.2021.00062

15. Eismann, S., Bui, L., Grohmann, J., Abad, C., Herbst, N., Kounev, S.: Sizeless: Predicting the
Optimal Size of Serverless Functions, p. 248–259. Association for Computing Machinery,
New York, NY, USA (2021), https://doi.org/10.1145/3464298.3493398

16. Eivy, A.: Be wary of the economics of ”serverless” cloud computing. IEEE Cloud Comput.
4(2), 6–12 (2017). https://doi.org/10.1109/MCC.2017.32

17. Fan., C., Jindal., A., Gerndt., M.: Microservices vs serverless: A performance comparison
on a cloud-native web application. In: Proceedings of the 10th International Conference on
Cloud Computing and Services Science - CLOSER,. pp. 204–215. INSTICC, SciTePress
(2020). https://doi.org/10.5220/0009792702040215

18. Grafberger, A., Chadha, M., Jindal, A., Gu, J., Gerndt, M.: Fedless: Secure
and scalable federated learning using serverless computing. In: 2021 IEEE In-
ternational Conference on Big Data (Big Data). pp. 164–173 (Dec 2021).
https://doi.org/10.1109/BigData52589.2021.9672067

19. Jarachanthan, J., Chen, L., Xu, F., Li, B.: Astra: Autonomous serverless ana-
lytics with cost-efficiency and qos-awareness. In: 2021 IEEE International Par-
allel and Distributed Processing Symposium (IPDPS). pp. 756–765 (2021).
https://doi.org/10.1109/IPDPS49936.2021.00085

20. Jindal, A., Chadha, M., Benedict, S., Gerndt, M.: Estimating the capacities of function-as-
a-service functions. In: Proceedings of the 14th IEEE/ACM International Conference on
Utility and Cloud Computing Companion. UCC ’21 Companion, Association for Computing
Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3492323.3495628

21. Jindal, A., Frielinghaus, J., Chadha, M., Gerndt, M.: Courier: Delivering serverless func-
tions within heterogeneous faas deployments. In: Proceedings of the 14th IEEE/ACM In-
ternational Conference on Utility and Cloud Computing. UCC ’21, Association for Com-
puting Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3468737.3494097,
https://doi.org/10.1145/3468737.3494097

https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/whitepapers/latest/serverless-architectures-lambda/choosing-the-optimal-memory-size.html
https://docs.aws.amazon.com/whitepapers/latest/serverless-architectures-lambda/choosing-the-optimal-memory-size.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/Create-CloudWatch-Events-Scheduled-Rule.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/Create-CloudWatch-Events-Scheduled-Rule.html
https://docs.aws.amazon.com/compute-optimizer/latest/ug/requirements.html#requirements-lambda-functions
https://docs.aws.amazon.com/compute-optimizer/latest/ug/requirements.html#requirements-lambda-functions
https://docs.aws.amazon.com/compute-optimizer/latest/ug/requirements.html#requirements-lambda-functions
https://aws.amazon.com/lambda/pricing/
https://github.com/alexcasalboni/aws-lambda-power-tuning
https://github.com/alexcasalboni/aws-lambda-power-tuning
https://doi.org/10.1145/3429880.3430100
https://doi.org/10.1109/CLOUD53861.2021.00062
https://doi.org/10.1145/3464298.3493398
https://doi.org/10.1109/MCC.2017.32
https://doi.org/10.5220/0009792702040215
https://doi.org/10.1109/BigData52589.2021.9672067
https://doi.org/10.1109/IPDPS49936.2021.00085
https://doi.org/10.1145/3492323.3495628
https://doi.org/10.1145/3468737.3494097
https://doi.org/10.1145/3468737.3494097


MAFF: Self-Adaptive Memory Optimization for Serverless Functions 17

22. Jindal, A., Gerndt, M.: From devops to noops: Is it worth it? In: Ferguson, D., Pahl, C.,
Helfert, M. (eds.) Cloud Computing and Services Science. pp. 178–202. Springer Interna-
tional Publishing, Cham (2021)

23. Linux: dd(1) - Linux manual page, https://man7.org/linux/man-pages/man1/dd.1.
html

24. Ruder, S.: An overview of gradient descent optimization algorithms. Tech. rep. (2017),
http://caffe.berkeleyvision.org/tutorial/solver.html

25. Shahrad, M., Balkind, J., Wentzlaff, D.: Architectural implications of function-as-a-service
computing. In: Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture. pp. 1063–1075 (2019)

26. Shankar, V., Krauth, K., Vodrahalli, K., Pu, Q., Recht, B., Stoica, I., Ragan-Kelley, J., Jonas,
E., Venkataraman, S.: Serverless linear algebra. In: Proceedings of the 11th ACM Sympo-
sium on Cloud Computing. p. 281–295. SoCC ’20, Association for Computing Machinery,
New York, NY, USA (2020). https://doi.org/10.1145/3419111.3421287

27. Steinbach, M., Jindal, A., Chadha, M., Gerndt, M., Benedict, S.: Tppfaas: Modeling server-
less functions invocations via temporal point processes. IEEE Access 10, 9059–9084 (2022).
https://doi.org/10.1109/ACCESS.2022.3144078

28. Wang, L., Li, M., Zhang, Y., Ristenpart, T., Swift, M.: Peeking behind the curtains of server-
less platforms. In: 2018 {USENIX} Annual Technical Conference ({USENIX} {ATC} 18).
pp. 133–146. USENIX Association (2018)

29. WG, C.S.: Cncf wg-serverless whitepaper v1. 0. https://gw.alipayobjects.com/os/
basement_prod/24ec4498-71d4-4a60-b785-fa530456c65b.pdf (March 2018), [On-
line; Accessed: 15-July-2020]

30. Zhang, M., Zhu, Y., Zhang, C., Liu, J.: Video Processing with Serverless Computing: A
Measurement Study (2019). https://doi.org/10.1145/3304112.3325608

https://man7.org/linux/man-pages/man1/dd.1.html
https://man7.org/linux/man-pages/man1/dd.1.html
http://caffe.berkeleyvision.org/tutorial/solver.html
https://doi.org/10.1145/3419111.3421287
https://doi.org/10.1109/ACCESS.2022.3144078
https://gw.alipayobjects.com/os/basement_prod/24ec4498-71d4-4a60-b785-fa530456c65b.pdf
https://gw.alipayobjects.com/os/basement_prod/24ec4498-71d4-4a60-b785-fa530456c65b.pdf
https://doi.org/10.1145/3304112.3325608

	MAFF: Self-Adaptive Memory Optimization for Serverless Functions

