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Abstract—A multilayered autoscaling gets an increasing atten-
tion both in research and business communities. Introduction of
new virtualization layers such as containers, pods, and clusters
has turned a deployment and a management of cloud applications
into a simple routine. Each virtualization layer usually provides
its own solution for scaling. However, synchronization and col-
laboration of these solutions on multiple layers of virtualization
remains an open topic.

In the scope of the paper, we consider a wide research problem
of the autoscaling across several layers for cloud applications. A
novel approach to multilayered autoscalers performance mea-
surement is introduced in this paper. This approach is imple-
mented in Autoscaling Performance Measurement Tool (APMT),
which architecture and functionality are also discussed. Results
of model experiments on different requests patterns are also
provided in the paper.

Index Terms—tool to estimate autoscaling performance on mul-
tiple layers, multilayered autoscaling, performance of autoscaling,
cloud applications autoscaling, cloud

I. INTRODUCTION

Cloud computing’s success is based on the virtualization
technology that considers hardware as a pool of resources to
be provided to users in a form of virtual machines (VMs).
While such an abstraction introduces an additional overhead
for the indirect usage of hardware resources, it also helps
businesses scale their applications in the cloud fast. Scalability
of cloud applications is their major feature and the main reason
behind the cloud computing wide spread. Most cloud services
providers (CSPs) provide their users autoscaling services to
both capture the flash crowd traffic and save money when
additional machines are unneeded.

However, for some applications using microservice archi-
tecture, virtual machines could become inconvenient either
because of coarse granularity or because of the microservices
management inconvenience. Therefore, recent technological
improvements in cloud computing are revolving around new
levels of cloud abstraction and granularity. Such virtualization
entities as containers, pods, and clusters extend a cloud plat-
form from several viewpoints: the finer granularity of cloud
application components management; the easier support of
established computational paradigms and architectures; the
self-containment and the abscence of dependencies on ex-
ternal programs. The use of such technologies makes cloud
application highly flexible and easy to maintain. However,
with the introduction of several virtualization layers, the cloud
application architect should be aware of possible tradeoffs.

Additional layers of virtualization introduce a high level of
flexibility and control over a cloud application. But these lay-
ers are also responsible for the major loss in the performance
of multilayered cloud applications. Yet another major problem
for multilayered cloud applications is their poor manageability
as a whole.

Whereas each virtualization layer introduces layer-specific
management tool, almost no synchronization exists between
the layers. An attempt to extract advantages of each virtual-
ization layer for a distributed cloud application with the mi-
croservices architecture would end up with an unmanageable
solution that has a big potential to break itself [1].

The first step to synchronize autoscaling solutions is to
research the real performance of autoscaling solutions com-
binations. The measured performance would lead to under-
standing the major architectural drawbacks both for individual
autoscaling solutions and their combinations. The general
notion of the scaling performance is the time needed to scale
in response to the change in amount of requests. It is also
possible to consider the overall quality of a service provided
by the specific autoscaled cloud application in respect to
scaling effects that are taking place. Both notions were laid
as a foundation for the multilayered autoscaling performance
measurement approach introduced in this paper.

The key contribution of the paper is the novel approach
and a tool to solve the problem of the measurement of
autoscaling solutions’ performance. The presented approach
and the tool’s output data facilitate the research of autoscaling
effects both for single-layered and multilayered autoscaling
of an arbitrary application. A solution of the performance
measurement problem for autoscaler combinations paves a
path for understanding the conceptual and technical reasons
behind certain drawbacks of autoscaler combinations and, in
turn, gives an outlook on possible technical solutions to the
multilayered cloud application autoscaling problem.

The developed tool, namely APMT, could also be used
to check the rules that are set for autoscalers at different
virtualization layers to increase the performance during the
autoscaling and to decrease the time necessary to scale the
cloud application. Testing of various autoscaling scenarios
with different autoscaling rules could be a valuable use-case
of the developed tool for the industry.

In the following section of the paper we introduce a back-
ground information on multilayred virtualization. Further, in



Section III, we discuss the related work on the multilayered
virtualization and the autoscaling for multilayered cloud ap-
plications. Section IV discusses the multilayered autoscaling
performance measurement approach implemented in APMT.
In turn, APMT is described in detail in Section V from the
architectural and functional viewpoints. Section VI focuses
on experimental results that were acquired with APMT on
multilayer autoscaling examples with different requests gen-
eration patterns. Finally, Section VII concludes the paper and
introduces a direction for the future research.

II. BACKGROUND

A. Autoscaling for Virtual Machines
Addition or removal of virtual machines is the most com-

mon way to conduct autoscaling. For an autoscaling to work,
it must be combined with load balancing and monitoring.

Monitoring service is used to retrieve relevant metrics on
which alarms and triggers can be defined to execute custom
actions such as an increment (scale-out) or a decrement (scale-
in) of the resource pool size based on certain conditions.
Furthermore, both the increment and the decrement of the
resource pool size should be hidden from the users. This
is achieved by the load balancer that allows having a static
single-entry point for the application.

Each CSP provides its own native autoscaler which could
not be used alongside clouds of other CSPs. For the sake of
brevity, we provide a short overview only for AWS autoscaler
as we further use it for the experiments.

AWS (Amazon Web Services) Auto Scaling is a part of
the services offered by Amazon in its IaaS public cloud. The
core concept of AWS Auto Scaling is an Auto Scaling group
(ASG). ASG is a set of different Amazon Elastic Compute
Cloud (EC2) instances sharing similar characteristics and
subject to the same scaling policies. Therefore, every machine
in the group has the same Amazon Machine Image (AMI)
and the same hardware characteristics. AWS Auto Scaling
helps to maintain application availability and allows to scale
automatically according to conditions defined.

B. Autoscaling for Higher-Level Entities
We’ll discuss autoscaling for higher-level entities on the

example of Kubernetes as it is used in experiments.
Kubernetes is an orchestration tool which provides the

means to support containerized deployment atop Platform-
as-a-Service (PaaS) clouds, focusing specifically on cluster-
based systems. Kubernetes can schedule and run application
containers on clusters of physical or virtual machines. Ku-
bernetes pods are the smallest deployable units of computing
that can be created and managed in it. Kubernetes deploys
multiple pods across physical machines or VMs, enabling
the scaling of an application with the dynamically changing
workload. This autoscaling process of Kubernetes is called
a horizontal pod autoscaling (HPA). Each pod can support
multiple containers, which are able to make use of services
(e.g. file system and I/O) associated with a pod. With HPA,
Kubernetes automatically scales the number of pods in a

replication controller, deployment or replica set based on
observed CPU utilization.

In combination with autoscaling on VMs layer, it gives a
two-layered autoscaling which could be used to increase the
flexibility of industry cloud applications.

III. RELATED WORK

Research in VMs autoscaling mainly focuses on the devel-
opment of better autoscaling prediction models [2], [3]. The
comparison between different autoscaling prediction models
is provided in [4]. In [5], an autoscaling service that can
take advantage of metrics provided by different levels of the
cloud stack is discussed. This work presents a custom solution
instead of using native autoscalers provided by CSPs, thus
introducing an entry barrier for the industry already using
existing autoscalers. A Polyglot autoscaling service monitors
the application attached to it and resources to further adjust
the application based on the autoscaling policies of the user
and on the system conditions [13].

The research in containers autoscaling focuses mainly on
the development of algorithms to improve the containers
deployment [7], [10], [12]. A provision of the same QoS
assurance with light virtualization environment of containers is
investigated in [8]. Additionally, there exist CSP-independent
container orchestration solutions as Kubernetes and Docker
Swarm. Such solutions use the autoscaling to share the load
among containers. The autoscaling functionality of these so-
lutions is still under development.

There is also an ongoing research in the area of performance
monitoring and estimation for clouds on different layers of
virtualization. Results of cross-comparison of VM instances
performance to the containers are provided in [9]. Performance
of containers management tool Kubernetes is discussed in [6],
however the autoscaling aspect remains uncovered. One of
possible approaches to investigate the behaviour of autoscalers
is proposed in [11]. The main idea of the approach is to
model cloud autoscaling solutions using time series data. Such
an approach imposes a heavy limitation on the autoscaling
research as real-world load patterns could significantly differ
from the modelled data.

To the best of our knowledge, the area of multilayered
autoscaling performance measurement at the moment remains
mostly uncovered in the literature. Moreover, the necessity of
our work is also based on the absence of a tool to monitor the
performance of autoscalers on different layers of virtualization
for an arbitrary application under different requests patterns.
A novel approach that is used as a foundation of the APMT
also contributes to the novelty of the results provided in the
following sections.

IV. MULTILAYERED AUTOSCALING PERFORMANCE
MEASUREMENT APPROACH

A. Single-Layered Autoscaling Performance Measurement
As autoscaling’s main purpose is to react to the change in

the amount of requests, the reaction time or the autoscaling
latency, i.e. the time between the decision of the autoscaler to



scale the resources and the final adaptation of the resource,
is an important metric for the performance of the autoscaler.
Additional metrics can be derived from the service’s QoS
requirements. These are the fraction of the autoscaler latency
where QoS requirements were not matched. Let us first define
autoscaling latency based on two metrics of the autoscaler:
CAI and DAI.

In order to measure the autoscaling latency, we use two
metrics provided by autoscalers: Current Amount of Instances
(CAI) and Desired Amount of Instances (DAI). Each autoscaler
contains autoscaling rules that determine conditions triggering
autoscaling actions (scale-in or scale-out). As the deployment
of a VM (or another autoscaling entity) takes time for resource
allocation, booting and configuring, DAI will differ from CAI
for a certain time interval. After autoscaling is completed,
CAI and DAI will be equal. So, we consider the described
time interval to be the autoscaling latency. If tstart is the
start time and tfinish is the finish time of autoscaling then
the autoscaling interval Tautoscale = [tstart, tfinish] is the
interval such that 8t 2 Tautoscale : CAI(t) 6= DAI(t).
If 8t 2 Tautoscale we see that CAI(t) < DAI(t) then
Tautoscale is a scale-out interval. If 8t 2 Tautoscale we have
CAI(t) > DAI(t) then Tautoscale is a scale-in interval.
CAI = DAI represents ordinary functioning of the cloud
application. The autoscaling latency of an autoscaling interval
Tautoscale is defined as tfinish � tstart.

Other performance measures for autoscaling solutions are
based on the notion of the quality of service for the cloud
application. Basically, each quality of service parameter de-
pends on the performance that the cloud service demonstrates.
However, instead of looking at all the QoS parameters, we
have chosen two that directly get influenced by the autoscaler’s
performance. These parameters are - a cloud service latency
and the amount of failed requests. These metrics have cor-
responding QoS limitations imposed on them by the cloud
application users:

• Cloud application latency: should be below the given
service latency threshold.

• Failure rate: should be below the given service failure
rate threshold.

The definition of service latency is the time for an individual
request and for failure rate is the fraction of the requests that
failed, where failing is given, when the latency exceeds a
certain failure-threshold. To measure the performance of the
autoscaler, we now define the following two metrics: service
latency violation and service failure rate violation. Both are the
fraction of the autoscaling interval where the corresponding
QoS requirement was violated.

As the performance metric for autoscaling based on the
cloud service latency, we identify the fraction of the autoscal-
ing interval Tautoscale when the latency was above the pre-
defined maximum. If Tautoscale = [ta, tb] and Thighlatency =
[tc, td] where ta  tc  td  tb, then 8t 2 Thighlatency we
see that latency(t) > latencyrequired. Thus, this performance

measure can be computed as:

HL(Tautoscale) =
td � tc

tb � ta
(1)

The value of 1 for HL(Tautoscale) means that
during the whole autoscaling interval, the requirement
on the latency wasn’t met. In more complex
cases, Thighlatency could be a set of intervals, e.g.
Thighlatency = {T (1)

highlatency, T
(2)
highlatency, ...T

(p)
highlatency}.

Then it would be necessary to compute Thighlatency as a sum
of these intervals lengths.

Analogously to HL(Tautoscale), we compute the fraction of
autoscaling interval during which the amount of failed requests
was higher than a predefined value. So, if Tautoscale = [ta, tb]
and Thighfaults = [te, tf ] where ta  te  tf  tb, then 8t 2
Thighfaults we see that requestsfailed(t) > limitfailed where
limitfailed is the highest amount of failed requests according
to the service level agreement (SLA). In the simplest case, the
performance measure is computed as:

FR(Tautoscale) =
te � tf

tb � ta
(2)

Presented autoscaling performance metrics (1), (2) are sim-
ple yet efficient as they allow the direct estimation of the
autoscaling quality in a form relevant both for research and
business tasks.

All the above definitions like autoscaling latency could be
extended to average values over several autoscaling intervals.

B. Multilayered Autoscaling Performance Measurement
A main research problem for multilayered autoscaling per-

formance measurement is to identify, which set of scaling
events on different layers to consider a single scaling case.
Tas = {T (1)

1 , T
(2)
1 , ...T

(n)
1 } is a set of autoscaling intervals,

whereas T
(1)
1 is an autoscaling interval on the level of scaling

closest to the hardware (native CSP’s autoscalers are on
this level); superscript denotes the level. T

(i)
2 , i = 1 : n

would be next autoscaling intervals on the same layers. An
autoscaling interval T (i)

1 is considered as an element of the set
of autoscaling intervals for a single case of the multilayered
autoscaling if and only if 8j : j < i we have the following
conditions fulfilled:

T
(i)
1 � T

(j)
2 (3)

T
(i)
1 � T

(j)
1 (4)

CAI(tj)�DAI(tj)

|CAI(tj)�DAI(tj)|
· CAI(ti)�DAI(ti)

|CAI(ti)�DAI(ti)|
= 1 (5)

8tj 2 T
(j)
2 and 8ti 2 T

(i)
1 . Thus, in order to be considered

a part of the single autoscaling an autoscaling on level i

should 1) occur when all previous layers have entered a stable
state, i.e. CAI = DAI , after the corresponding previous
j

th autoscaling has already occured1, and 2) be of the same

1In case of scale-out autoscaling we consider previous layers based on
their distance to hardware, i.e. how many layers are between the current layer
and the hardware. In the scale-in case, we consider the layer farthes from the
hardware to be the first, so the enumeration starts at the topmost virtualization
layer.



direction (scale-in or scale-out) as each of autoscalings on
previous layers.

An example of the multilayered autoscaling case consisting
of autoscaling intervals on different layers is presented in
Fig. 1.

Fig. 1. Example of identification of multilayered autoscaling cases for two-
layered architecture.

After we’ve defined the notion of the multilayered autoscal-
ing, we will provide a formula to compute the autoscaling
duration for a single autoscaling event of the multilayered
cloud application. If we consider A = {a1, a2, ...am} a set
of indices that enumerates all the members of Tas then we
can compute the duration of the multilayered autoscaling with
the following formula:

�Tas = |T (a1)
1 |+

mX

i=1

(|T (ai+1)
1 |� |T (ai+1)

1 \ T
(ai)
1 |) (6)

Formula (6) takes into account a possible intersection of
autoscaling intervals on different layers by adding a delta of
the interval further in time (if a pair of consecutive intervals
overlaps) or the whole interval (if a pair of consecutive
intervals does not overlap, i.e. T

(ai+1)
1 \ T

(ai)
1 = ;. The

formula (6) with respect to constraints (3), (4), and (5), gives
us an estimate for the duration of the single autoscaling event
for an arbitrary multilayered cloud application.

In respect to metrics, previously introduced formulae (1) and
(2) are still in use, but the notion of the autoscaling interval on
which they are computed is changed according to the following
formula:

Tautoscale =
m[

i=1

T
(ai)
1 (7)

The presented multilayered autoscaling performance mea-
surement approach is implemented in Autoscaling Perfor-
mance Measurement Tool which is discussed in the following
section.

V. AUTOSCALING PERFORMANCE MEASUREMENT TOOL

A. Autoscaling Performance Measurement Tool Overview

APMT has a user-friendly web-interface. The tool is devel-
oped mostly in Node.js. An overall architecture of the APMT

and communications between components thereof in a typical
use case is shown in Fig. 2. APMT is divided into back-
end and front-end layers. Each layer consists of components
implementing micro-services architecture; these components
can be scaled in case of changing requirements.

Fig. 2. Autoscaling Performance Measurement Tool Simplified Architecture.

Currently, APMT integrates three autoscaling options,
namely, AWS Auto Scaling, Kubernetes horizontal pod scal-
ing, and the combination of these two autoscalers. Each option
has its own configuration and deployment strategy. In further
subsections we present two layers of the developed tool.

B. Front-End Layer
Front-end layer represents a part of APMT designated to in-

teract with user and provide him or her with an opportunity to
select different options. Front-end comprises five components
with user interfaces. In the following paragraphs we provide
detailed description of these components.

Configuration Interface. The Configuration Interface pro-
vides user with the autoscaler configuration functionality. This
component deploys and terminates autoscalers automatically
using different user configurations. Each autoscaling option
provided by the Configuration Interface support a number of
configuration parameters.

AWS Auto Scaling allows to scale the number of VM in-
stances based on the configurable parameters: type of instance,
min. and max. number of instances, scaling decision metric
(with its threshold) and autoscaling policy.

Kubernetes Horizontal Pod Autoscaling scales the number
of pods whereas the number of VMs remains fixed in the
cluster. As of now, only the CPU utilization is supported as the
autoscaling decision metric in Kubernetes. For this autoscaling
option there are also a number of parameters to set: type of
instance, number of instances to include in a cluster, scaling
decision metric (with its threshold).

Combined autoscaling combines previously described au-
toscaling options. It comprises the combined parameters of
these aforementioned autoscaling options.

Deployment Interface. This interface allows the selected
autoscaling option to be automatically deployed on the CSP’s
cloud using its native instances types. A single-click function-
ality to undeploy all instances is also provided.



Cloud Application Interface. Cloud Application Interface
enables the selection from a list of different types of applica-
tions2. Supported pre-defined applications categories:

• CPU intensive Applications.
• I/O Applications.
• High Memory Usage Applications.
User can select an application in any of these categories

to check the performance of the autoscaling solution on a
particular autoscaling decision metric. At the moment, the tool
implementation supports only CPU intensive applications.

Request Patterns-based Load Generator Interface. This
component provides an interface to the workload request
generator integrated in the APMT. It allows user to select
any of the pre-configured load patterns in order to test the
performance of the specific autoscaling option. At the moment,
only four load patterns are supported by APMT.

Linear Increase Load Pattern represents linearly increasing
number of requests per second in the scope of the load test
time. Linear Increase and Constant Load Pattern represents
linearly increasing number of requests per second which
becomes constant in the second half of the load test time.
Random Load Pattern represents randomly increasing and
decreasing number of requests per second in the scope of
the load test time. Triangle Load Pattern represents linearly
increasing number of requests per second which then linearly
decreases with the same speed in the second half of the load
test time thus forming a triangle-like shape on a graph.

In the scope of the component, user can also configure the
load pattern setting a number of options: number of concurrent
clients, maximal number of requests, maximal duration of a
test, request timeout, HTTP request method, request body,
content type, a number of requests per second.

Metrics Visualization Interface. This interface shows
graphs and tables for all the performance metrics. User can
look at these graphs and tables to compare autoscaling options
and choose the best one.

C. Back-End Layer

Back-end layer comprises components tightly integrated
with the front-end components to provide a seamless user
experience. In the following paragraphs we describe their
functionality and structure in more details.

Autoscaling Solution Deployment Service. This service
is linked with Configuration Interface, Deployment Interface
and Cloud Application Interface components of the front-
end layer. The purpose of this service is to combine the
configuration parameters with the selected application and
further to deploy it using the chosen autoscaling option. As
a part of deployment, a monitoring service is also attached
to collect the performance metrics and store this data in a
database. Each autoscaler has different deployment procedure.
In the following paragraphs we provide a brief information on
each autoscaler’s deployment procedure.

2This component also supports arbitrary cloud application if necessary for
testing.

AWS Auto Scaling. An Elastic Load Balancer (ELB) and
an Auto Scaling Group (ASG) are created in AWS Cloud
using selected parameters. Afterwards, scaling parameters and
polices are added to the ASG, and the chosen application is
deployed on the created VMs. AWS Cloud Watch is used to
collect the metrics data for the whole ASG as well as for the
individual EC2 instances. Fig. 3 depicts the AWS Auto Scaling
option deployment architecture.

Fig. 3. Deployment of the AWS autoscaler.

Kubernetes Horizontal Pod Scaling. For the deployment of
a Kubernetes cluster, APMT uses kubeadm3. The selected
parameters are used to create the Kubernetes cluster in the
AWS cloud using the EC2 instances. The cluster consists of a
master node and a certain number of minion nodes (node refers
to a VM instance). For collection of the metrics, APMT uses
Heapster4 coupled with the InfluxDb5 used to store metrics in
the form of time series natively. Metrics data is continuously
fetched by APMT and stored in the database. Both kubeadm
and Heapster are deployed in the scope of the cluster alongside
the chosen application. Fig 4 depicts the Kubernetes horizontal
pod autoscaler deployment in the cloud.

Fig. 4. Deployment of the Kubernetes horizontal pod autoscaler.

Combined autoscaling. This option provides the combined
version of the discussed autoscalers. Firstly, as Kubernetes
cluster requires a master node to be started before starting

3https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/
4https://github.com/kubernetes/heapster
5https://www.influxdata.com/time-series-platform/influxdb/



the minion nodes, we change the AWS ASG capacity to a
single instance. This single instance serves as a master node
for the Kubernetes cluster. This change enables us that no other
instances will be started until the master node is ready. Once
the master node is ready, we update the ASG configuration
with user-provided parameters values. This change makes
AWS autoscaler check whether any instance needs to be added
to the group; to each new instance a launch configuration is
attached. This launch configuration includes an instance start
script which has all the configuration and commands required
by the VM instance to join the Kubernetes cluster. Hence
when a new instance has to be added to ASG, it automatically
joins the Kubernetes cluster. In the scale-in phase, the VM
instance to be terminated is drained safely by the master
node from the Kubernetes cluster so that no further pods
are scheduled on it and the pods already running on it are
scheduled on other nodes. As there is a chance of the master
node getting terminated as a part of ASG, APMT uses AWS
instance protection and instance termination polices to protect
the master node from termination. Furthermore, we have used
ELB to direct the load to ASG which internally gets distributed
to Kubernetes pods. For collecting the metrics, we have used
both the AWS Cloud Watch (to get the metrics for ASG and
EC2 instances) and the Heapster service(to get the metrics
about the Kubernetes cluster). These metrics are continuously
fetched by APMT and stored in the database. Fig. 5 depicts
the combined autoscalers deployment in the cloud.

Fig. 5. Combined autoscalers deployment.

Load Generator Service. This service generates the desired
amount of requests sent to the deployed application IP-address
based on the workload pattern selected by the user. Load
Generator Service is basically the customized version of
Node.js based Loadtest6. For a selected load pattern, a certain
number of clients and a load generation time are configured.
A single load generation node does not become the bottleneck
if the amount of requests to be generated is too high. After
completion of each request, performance parameters are stored
in the database for the purposes of visualization and analysis.

6https://www.npmjs.com/package/loadtest

Fig 6 depicts the overall architecture of the Load Generator
Service.

Fig. 6. Load Generator Service architecture.

Metrics Collection Service. This service periodically
fetches the data from different monitoring services deployed as
part of autoscalers and stores them in the database for further
performance analysis.

NoSQL Database. APMT uses MongoDB to store the per-
formance data and whereas MongoDB demonstrates the pref-
erence towards high insert rate over the transaction safety. Data
schemes differ across different autoscaling options therefore
MongoDB being schema-less database makes it an acceptable
choice.

VI. EXPERIMENTAL RESULTS

A. Experimental Setting
In our experiments, we use four different workload patterns

linear increase, linear increase further becoming a constant,
random increase/decrease, and linear increase followed by
linear decrease forming a triangle-shaped load. The total time
for each test was 20 minutes; request timeout is 6.5 seconds.
Additional configuration for each load pattern is described in
Table I.

TABLE I
EXPERIMENTAL CONFIGURATION: LOAD GENERATOR SERVICE

Pattern type Requests per second Concurrent
clients

Linear Increase Starts with 1, increases by 3
every second. 50

Linear Increase
and Constant

Starts with 1, increases by 3
every second, remains constant
after half of the test time has
passed.

50

Random Starts with 50, either increases
or decreases randomly every
second

50

Triangle Starts with 1, increases by 3
every second, decreases by 3
every second after half of the
test time has passed.

50

A test application computes the sum of prime numbers
starting with 1 and up to 1000000 when called using a



particular API call. Executing this computation from multiple
clients will increase the CPU utilization. Hence we can see
the autoscaling option effect on the deployment.

Each autoscaler is deployed on the AWS cloud with the VM
configuration mentioned in the Table II.

TABLE II
EXPERIMENTAL VM CONFIGURATION

Instance type Memory vCPUs
t2.micro 1 GB 1 vCPU

Table III depicts the configuration of Kubernetes autoscaler
whereas Table IV contains AWS autoscaler configuration. For
the combined case, we APMT uses configurations from both
tables.

TABLE III
EXPERIMENTAL CONFIGURATION: KUBERNETES AUTOSCALER

Instances Min. pods Max. pods Scaling metric Threshold
2 1 10 CPU Utilization 10 %

TABLE IV
EXPERIMENTAL CONFIGURATION: AWS AUTOSCALER

Min. instances Max. instances Scaling metric Threshold
1 3 CPU Utilization 10 %

B. Autoscaling Performance Measurements

The main results of the analysis of the data acquired by
APMT for the combination of AWS native autoscaler with
Kubernetes pods cluster resizing on the test case are provided
in the Table V. For the combined case, we have used the
presented approach to identify connected autoscaling inter-
vals and compute the scaling times. To compute autoscaling
performance metrics presented in the table we have used the
following QoS requirements: mean latency should be no more
than 2.5 seconds, errors rate should not be more than 10
errors per discretion interval. In principle, these results prove
the possibility to use the provided approach and the tool to
measure the performance of autoscaling. In the following table,
HL represents the fraction of an autoscaling interval with a
high mean latency, whereas FR stands for the fraction of an
autoscaling interval with a high failed requests rate. Both HL
and FR were computed for the multilayered scale-out case as
each pattern contains single multilayered scale-out case and
latency and errors metrics are collected during the scale-out
autoscaling cases only.

For the sake of brevity, full experimental results with per-
formance data (latencies and errors) are presented graphically
in Fig. 7. On plots F, L, R, X request failures are caused
by the inability of instances to cope with the growing request
numbers considering the limitation of 6.5 seconds to wait for
processing of the single request.

TABLE V
EXPERIMENTAL RESULTS FOR TWO-LAYERED AUTOSCALING (AWS +

KUBERNETES)

Layer Load Pattern Scale-
Out
Time,

Scale-
In
Time,

HL FR

seconds seconds
AWS Linear Increase 15.9 375.6 0.00 0.45

Linear Increase 4.0 376.2 0.01 0.01
and Constant
Random 10.0 379.7 0.00 0.01
Triangle 11.9 379.2 0.02 0.05

Kubernetes Linear Increase 30.0 30.0 0.00 0.00
Linear Increase 30.0 30.0 0.66 0.68
and Constant
Random 30.0 30.0 0.38 0.62
Triangle 30.0 30.0 0.47 0.47

Combined Linear Increase 76 412.6 0.00 0.13
Linear Increase 34.0 409.2 0.65 0.70
and Constant
Random 40.0 - 0.00 0.46
Triangle 41.9 400.3 0.05 0.15

On the example of linearly increasing requests generation
pattern (plots A, B, C, D, E, F), we can notice a peak latency
on plot E during the first scale-out of instances (VMs layer,
see plot D). After this peak, latency rapidly decreases and
stays on the low level during the rest request generation time.
Moreover, failures peak from on the plot F resembles the
latency peak on plot E. This illustrates the low QoS during the
autoscaling on the level of VMs. From this and other requests
generation patterns we can see that scaling of pods has almost
no influence on performance what could be explained as pods
increase and decrease not representing an actual change in
hardware resources, so pods scaling is not critical for the
experimental application’s performance.

Plots for other requests generation patterns depict more
or less the same behaviour of autoscalers. It is important to
note that the scale-in time for AWS is larger than its scale-
out time. This behavour could be explained by the number
of activities that AWS executes during undeployment of an
instance. Nevertheless, this pattern will be investigated in the
future paper. States of pods readiness is yet another point
for future investigation as it may lead to adjustments in the
presented approach.

VII. CONCLUSIONS

Synchronization challenges and performance issues occur
during the scaling of multilayered cloud applications. In some
cases interference of an autoscaler on another level leads
to the loss of the functionality. Therefore it is important
to capture performance and functionality issues and track
down architectural reasons for this. The aproach and the tool
proposed in the paper serve to solve the problem of the
autoscaling performance measurement both for single- and
multilayered cloud applications.

The presented approach and the tool could be applied in the
cloud-powered industry. A key example would be the APMT
use to check the autoscaling rules at different virtualization



Fig. 7. Example of autoscaling time and performance graphs for combination of AWS native autoscaling with Kubernetes pods clusters resizing. Each graphs
column corresponds to one of the foar load patterns: linearly increasing, linearly increasing with constant level, random, triangle.

layers in order to derive the best configuration of autoscaling
rules. This could be done automatically using APMT on a first
step to tune the scaling rules subject to optimization goals.

In the scope of the further research we plan to conduct a
comprehensive estimation of existing autoscaling solutions and
their combinations using the developed approach and APMT.
As a result, we aim to acquire highly performant recipes to use
autoscaling solutions and policies and combinations thereof for
multilayered cloud applications.
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