
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/332753877

Multilayered Autoscaling Performance Evaluation: Can Virtual Machines and

Containers Co-Scale?

Preprint · April 2019

DOI: 10.13140/RG.2.2.12651.59683

CITATIONS

0
READS

167

3 authors, including:

Some of the authors of this publication are also working on these related projects:

Function Delivery Network: Extending serverless computing for heterogeneous platforms View project

Self-Adaptive IoT Platform View project

Vladimir Podolskiy

Technische Universität München

46 PUBLICATIONS   132 CITATIONS   

SEE PROFILE

Anshul Jindal

Technische Universität München

33 PUBLICATIONS   113 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Vladimir Podolskiy on 30 April 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/332753877_Multilayered_Autoscaling_Performance_Evaluation_Can_Virtual_Machines_and_Containers_Co-Scale?enrichId=rgreq-97562513b362c0eb64365d8dc97ca955-XXX&enrichSource=Y292ZXJQYWdlOzMzMjc1Mzg3NztBUzo3NTMzNDI2OTk1NjUwNThAMTU1NjYyMjMwNDg3OA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/332753877_Multilayered_Autoscaling_Performance_Evaluation_Can_Virtual_Machines_and_Containers_Co-Scale?enrichId=rgreq-97562513b362c0eb64365d8dc97ca955-XXX&enrichSource=Y292ZXJQYWdlOzMzMjc1Mzg3NztBUzo3NTMzNDI2OTk1NjUwNThAMTU1NjYyMjMwNDg3OA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Function-Delivery-Network-Extending-serverless-computing-for-heterogeneous-platforms?enrichId=rgreq-97562513b362c0eb64365d8dc97ca955-XXX&enrichSource=Y292ZXJQYWdlOzMzMjc1Mzg3NztBUzo3NTMzNDI2OTk1NjUwNThAMTU1NjYyMjMwNDg3OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Self-Adaptive-IoT-Platform?enrichId=rgreq-97562513b362c0eb64365d8dc97ca955-XXX&enrichSource=Y292ZXJQYWdlOzMzMjc1Mzg3NztBUzo3NTMzNDI2OTk1NjUwNThAMTU1NjYyMjMwNDg3OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-97562513b362c0eb64365d8dc97ca955-XXX&enrichSource=Y292ZXJQYWdlOzMzMjc1Mzg3NztBUzo3NTMzNDI2OTk1NjUwNThAMTU1NjYyMjMwNDg3OA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vladimir-Podolskiy-2?enrichId=rgreq-97562513b362c0eb64365d8dc97ca955-XXX&enrichSource=Y292ZXJQYWdlOzMzMjc1Mzg3NztBUzo3NTMzNDI2OTk1NjUwNThAMTU1NjYyMjMwNDg3OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vladimir-Podolskiy-2?enrichId=rgreq-97562513b362c0eb64365d8dc97ca955-XXX&enrichSource=Y292ZXJQYWdlOzMzMjc1Mzg3NztBUzo3NTMzNDI2OTk1NjUwNThAMTU1NjYyMjMwNDg3OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Technische-Universitaet-Muenchen?enrichId=rgreq-97562513b362c0eb64365d8dc97ca955-XXX&enrichSource=Y292ZXJQYWdlOzMzMjc1Mzg3NztBUzo3NTMzNDI2OTk1NjUwNThAMTU1NjYyMjMwNDg3OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vladimir-Podolskiy-2?enrichId=rgreq-97562513b362c0eb64365d8dc97ca955-XXX&enrichSource=Y292ZXJQYWdlOzMzMjc1Mzg3NztBUzo3NTMzNDI2OTk1NjUwNThAMTU1NjYyMjMwNDg3OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anshul-Jindal-2?enrichId=rgreq-97562513b362c0eb64365d8dc97ca955-XXX&enrichSource=Y292ZXJQYWdlOzMzMjc1Mzg3NztBUzo3NTMzNDI2OTk1NjUwNThAMTU1NjYyMjMwNDg3OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anshul-Jindal-2?enrichId=rgreq-97562513b362c0eb64365d8dc97ca955-XXX&enrichSource=Y292ZXJQYWdlOzMzMjc1Mzg3NztBUzo3NTMzNDI2OTk1NjUwNThAMTU1NjYyMjMwNDg3OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Technische-Universitaet-Muenchen?enrichId=rgreq-97562513b362c0eb64365d8dc97ca955-XXX&enrichSource=Y292ZXJQYWdlOzMzMjc1Mzg3NztBUzo3NTMzNDI2OTk1NjUwNThAMTU1NjYyMjMwNDg3OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anshul-Jindal-2?enrichId=rgreq-97562513b362c0eb64365d8dc97ca955-XXX&enrichSource=Y292ZXJQYWdlOzMzMjc1Mzg3NztBUzo3NTMzNDI2OTk1NjUwNThAMTU1NjYyMjMwNDg3OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vladimir-Podolskiy-2?enrichId=rgreq-97562513b362c0eb64365d8dc97ca955-XXX&enrichSource=Y292ZXJQYWdlOzMzMjc1Mzg3NztBUzo3NTMzNDI2OTk1NjUwNThAMTU1NjYyMjMwNDg3OA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Int. J. Appl. Math. Comput. Sci., , Vol. , No. , –
DOI:

MULTILAYERED AUTOSCALING PERFORMANCE EVALUATION:
CAN VIRTUAL MACHINES AND CONTAINERS CO-SCALE?

VLADIMIR PODOLSKIY a,∗, ANSHUL JINDAL a , MICHAEL GERNDT a

aChair of Computer Architecture and Parallel Systems
Technical University of Munich, Germany, Garching (near Munich), Boltzmannstr. 3

e-mail: v.podolskiy@tum.de, anshul.jindal@tum.de, gerndt@in.tum.de

This paper is invited to the Special Section on ”Advances on complex cloud and service oriented computing”.
The wide adoption of cloud computing by businesses is due to several reasons, among which the elasticity of the cloud
virtual infrastructurea is the definite leader. Container technology allows to increase the flexibility of an application by
adding another layer of virtualization. The containers can be dynamically created and terminated, and also moved from
one host to another. A company can achieve a significant cost reduction and increase the manageability of its applications
by allowing to run the containerized microservice applications in the cloud. The scaling for such solutions is conducted on
both layers - the virtual infrastructure layer and the containers layer. Scaling on both layers needs to be synchronized so
that for example the virtual machine won’t be terminated with containers still running on it. The synchronization between
layers is enabled by multilayered cooperative scaling implying that the autoscaling solution of the virtual infrastructure
layer is aware of the decisions of the autoscaling solution on the containers layer and vice versa.
In this paper, we introduce a notion of the cooperative multilayered scaling and the performance of the multilayered au-
toscaling solutions evaluated using the approach implemented in ScaleX (previously known as Autoscaling Performance
Measurement Tool, APMT). We provide the results of the experimental evaluation of the multilayered autoscaling perfor-
mance for the combination of the virtual infrastructure autoscaling of AWS, Microsoft Azure and Google Compute Engine
with the pods horizontal autoscaling of Kubernetes by using ScaleX with 4 distinct load patterns. We also discuss the effect
of the Docker container image size and its pulling policy on the scaling performance.

ahttps://www.techopedia.com/definition/30459/virtual-infrastructure

Keywords: cooperative scaling, multilayered autoscaling, autoscaling performance, autoscaling evaluation, ScaleX

1. Introduction

Cloud computing is based on virtualization. This
technology represents the hardware as a pool of resources
to be sliced and provided to users in a form of virtual
machines (VM), it also helps businesses to scale their
applications. Scalability of cloud applications is one
of main reasons behind the wide adoption of cloud
computing. Most of the IaaS cloud services providers
(CSP) offer autoscaling services to adapt the VMs to the
changing demand.

A new type of virtual entity, container, allows the
user to design loosely-coupled applications consisting of
multiple small building blocks. These building blocks,
microservices, implement a small set of functions and

∗Corresponding author

communicate with other microservices. The runtime
environment is packed within the container allowing
to execute the microservice anywhere, both on bare
metal or in VM. Containerization extends the cloud
computing paradigm from several viewpoints: finer and
more accurate management of the running application;
decoupling of the application from the underlying
resources; the self-containment of the microservices.
However, management of several virtualization layers can
become very challenging.

Additional layers of virtualization introduce a higher
level of flexibility and control. Aside from obvious
performance loss when introducing additional layers of
virtualization, an absence of the awareness of these
virtualization layers about each other could become a
significant concern. With the lack of coordination

v.podolskiy@tum.de
anshul.jindal@tum.de
gerndt@in.tum.de


2 V. Podolskiy, A. Jindal and M. Gerndt

between the multiple layers, one can expect that e.g. the
termination of the VM due to autoscaling can result in
the termination of the running containers, and, potentially,
in unfulfilled requests. By increasing the awareness of
the virtualization layers about their neighbours with mul-
tilayered cooperative scaling, the flexible multilayered
application deployment may acquire the predictable
scaling behavior.

With the rich set of metrics and approaches
to evaluate existing autoscaling solutions1 and their
policies2, it may become difficult to select one or
several for a particular case. One should always
distinguish between the evaluation of the quality of the
autoscaling policy and the evaluation of the autoscaling
solution performance. In this paper, the emphasis
is put on the evaluation of the autoscaling solutions’
performance with the autoscaling policy being fixed
for all the cases. Particularly, the performance of the
multilayered autoscaling is presented for the combination
of infrastructure autoscaling by AWS, Azure, and GCE
with container-level autoscaling based on Kubernetes.

The key contributions of this paper are the theoretical
framework for the cooperative scaling involving different
types of virtual entities (VMs, containers), the refined
approach to the QoS-based multilayered autoscaling
performance evaluation based on the scaling intervals,
the extended description of the performance evaluation
tool ScaleX and its use, the results of the cooperative
autoscaling performance evaluation for the public IaaS
clouds (AWS, Azure and GCE) autoscaling solutions
combined with the autoscaling solution of Kubernetes,
and the results of the experiment highlighting the impact
of the container image size and pulling policy type on the
scaling performance.

The following section introduces the theoretical
framework and the background. Third section covers
the multilayered autoscaling performance evaluation
approach. The fourth section focuses on the autoscaling
performance measurement tool ScaleX. The fifth
section provides experimental results for evaluating the
performance of the multilayered autoscaling and for
estimating the potential impact of the container image
size and pulling policy on the autoscaling performance.
The sixth section discusses acquired experimental results.
The related works and the position of the paper in the
existing research are summarized in the seventh section.
The eighth section concludes the paper.

1An autoscaling solution is a piece of software that implements the
autoscaling.

2An autoscaling policy is a set of precise rules that determine how
the virtual infrastructure is scaled based on the monitored parameters of
the virtual infrastructure.

2. Theoretical Framework and Background

2.1. Scalability & Elasticity. ”The concept [of scal-
ability] connotes the ability of a system to accommodate
an increasing number of elements or objects, to process
growing volumes of work gracefully, and/or to be suscep-
tible to enlargement” (Bondi, 2000).

The scalability of cloud applications and the
underlying virtual infrastructure means that the number or
the capacity of the virtual entities constituting the cloud
application (containers) and the virtual infrastructure
(virtual machines, VM) can change dynamically in
response to the changing workload. Often, the scalability
of cloud is specified by the term ”elasticity” (Herbst
et al., 2013). Elasticity differs from scalability in a
sense that the state of the virtual infrastructure and cloud
applications, acquired as a result of the increased demand
for the capacity, lasts only until the amount of requests
and the resource utilization starts decreasing. Thus, cloud
applications and the virtual infrastructure can return to the
original state in terms of resources consumed. Elasticity
could be viewed from two viewpoints - that of the cloud
services provider and that of the cloud user.

The elasticity of the cloud as viewed by the CSP
revolves around the hardware resources provided to the
cloud users. The pool of hardware resources allocated for
the particular user in the form of VMs can arbitrarily grow
and shrink. The CSP provisions virtual machines for the
customer. It enables the dynamic change of the amount
of resources, e.g. elasticity on the infrastructure level.
This requires the provisioning of sufficient hardware as
well as the scheduling of the VMs. The cloud scalability
on the CSP’s side resides on the hardware virtualization
using hypervisors (e.g. Xen, Hyper-V) and on the
hardware resources allocation for the virtual machines
scheduling (Sotomayor et al., 2009a; Sotomayor et al.,
2009b). The society’s concerns about the ecology and the
CSP’s concerns about the cost of the electricity introduce
power consumption as another parameter to be considered
when scaling (Jakobik et al., 2017).

The elasticity of the cloud as viewed by the cloud
user puts the cloud application in the center. A cloud
application may consist of multiple microservices in
containers. The elasticity from the user’s prospect is in
the opportunity to increase or decrease the number of
microservice instances thus regulating the capacity of the
application in terms of processed requests. Elasticity in
that sense might be supported by CSPs out-of-the-box
(e.g. AWS Lambda). The scalability of the application
could be achieved within the IaaS cloud by running the
containers on top of VMs. We assume this scenario
when discussing the multilayered scaling spanning several
virtualization layers.



Multilayered Autoscaling Performance Evaluation ... 3

2.2. Changing the Cloud Capacity through Scaling.

2.2.1. Types of Scaling. From the point of view of the
cloud user, scaling can be conducted in two ways - either
by increasing the capacity of the existing virtual entities
or by increasing the number of the virtual entities.

Vertical scaling allows to change the resource
capacity of a virtual entity. In case of a virtual machine
it could be achieved e.g. by increasing the amount
of allocated memory or by the number of virtual CPU
cores assigned to the VM. The vertical scaling in such a
case could be represented by substituting the VM of the
type with smaller capacity for the VM of the type with
larger capacity (scale-up) or vice versa (scale-down). A
container can also be vertically scaled by changing the
maximal amount of resources allocated to it (e.g. maximal
amount of processor time as millicores parameter of
Kubernetes pods3).

Horizontal scaling allows to change the capacity of
the pool of the virtual entities by introducing new entities
or removing old entities. Horizontal scaling requires load
balancing. Horizontal scaling for large-scale applications
is preferable as it imposes homogeneity requirement on
the groups of virtual entities and does not require to stop
running the application in order to change the underlying
virtual machine.

2.2.2. Scaling the Virtual Infrastructure. Virtual
infrastructure is a ”software-based IT infrastructure be-
ing hosted on another physical infrastructure and meant
to be distributed as a service as in cloud computings In-
frastructure as a Service (IaaS) delivery model”4. In the
case of IaaS model, the virtual infrastructure could be
represented as one or more VMs that are allocated on
the physical servers in one of the CSP’s data centers.
From the point of view of the CSP, scaling the virtual
infrastructure is always connected to allocating more or
less hardware resources. From the point of view of the
IaaS cloud services user, the virtual infrastructure scaling
is represented either by the change in the number of virtual
machines (horizontal scaling) or by the change of the
type of virtual machines (vertical scaling). IaaS model
supports the automation of VMs scaling via means of
automatic scaling (or autoscaling).

The detailed discussion of the autoscaling is provided
in Subsection 2.3.

2.2.3. Scaling Containerized Applications. An
application container could be defined as ”a control-
ling element for an application instance that runs within
a type of virtualization scheme called container-based

3https://kubernetes.io/docs/concepts/configuration/manage-
compute-resources-container/

4https://www.techopedia.com/definition/30459/virtual-infrastructure

virtualization. [...] in container-based virtualization,
the individual instances share an operating system.”5.
Each application container can be an enclosed functional
unit of the application that provides services to other
containers. This viewpoint allows to consider container to
be a lightweight entity that includes a relatively compact
code base, though in general several microservices could
be packed in the same container.

Although containers support both types of scaling,
the most widely used is the horizontal scaling. Containers
scaling can be automated by using the containers
orchestration tools (e.g. DockerSwarm or Kubernetes).
The vertical scaling of the containers is not explicitly
implemented, however it could be simulated by increasing
or decreasing container resource limits6. The automation
of the containers on-the-fly vertical scaling is being
researched (Al-Dhuraibi et al., 2017). Kubernetes’
abstraction of pods as a group of containers sharing
the network and the storage7 leverages the opportunity
to decrease the degree of containers isolation allowing
access to the shared resources. It allows to schedule
and run application containers on clusters of physical
or virtual machines. The abstraction of a pod
serves as a basis to scale the groups of containers.
The automatic horizontal scaling thereof is supported
by Kubernetes out-of-the-box by monitoring the CPU
utilization and changing the number of pods in the
replication controller. The vertical autoscaling feature is
also actively developed8.

By leveraging the ability to scale both the virtual
infrastructure and the containers, we may introduce the
notions of the multilayered and cooperative scaling.

2.2.4. Multilayered & Cooperative Scaling.
Simultaneous scaling on the several layers of
virtualization introduces additional issues that do not
appear when scaling either the virtual infrastructure or the
containerized application. When putting the containers on
virtual machines, it is necessary to ensure that during the
scale-out the necessary amount of resources is available
in the form of VMs. It could also occur that VM is
terminated with the containers running on top of it. In
the case of Kubernetes, the accidental termination of the
master VM during the scale-down may yield fault of
the whole deployment. To avoid such problems, each
virtualization layer should be aware of the scaling actions
happening on the other layer. The multilayered scaling
with the enabled awareness of the scaling actions on other
layers can be called a cooperative scaling.

5https://www.techopedia.com/definition/31114/application-
container

6https://docs.docker.com/config/containers/resource constraints/
7https://kubernetes.io/docs/concepts/workloads/pods/pod/
8https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-

autoscaler



4 V. Podolskiy, A. Jindal and M. Gerndt

Cooperative scaling supposes the presence of several
virtualization layers. By putting the virtual entities of
one layer on top of the virtual entities of the other layer,
a dependency is established. Though the multilayered
structure allows more flexibility, the presence of a
dependency yields the scaling challenges. To reduce
the damaging effects of scaling on multiple layers, each
layer should receive the updates about the scaling actions
taken on another one. Allowing the scaling solutions on
different layers to communicate, the availability of the
application during and after the scaling can be ensured.

Cooperative scaling exhibits a) support for scaling on
multiple layers induced by triggering the same rule of the
scaling policy, b) coordinated scheduling of the scaling
activities on all the virtualization layers, c) availability of
the data about the planned scaling to the scaling solution
of the neighbour layer, d) scaling flexibility, e.g. ability
to use different scaling policies/thresholds to conduct the
scaling on different virtualization layers.

Currently, the production-level cooperative scaling
requires additional functionality to enable the selection of
the scaling policies parameters for each layer.

2.3. Autoscaling.

2.3.1. Reactive Autoscaling. Autoscaling (automatic
scaling, auto scaling, auto-scaling) is the technology that
enables the automatic provisioning and termination of
the virtual entities to adapt the resource capacity to the
changes in the demand. The key difference to the previous
discussion of scaling is in the automation of this process.
The automation is achieved by using a monitoring service
to retrieve relevant resource utilization metrics on which
alarms and triggers can be defined.

The state-of-the-art autoscaling solutions by public
CSPs are of the reactive type. Reactive autoscaling is the
type of autoscaling that either deploys or terminates the
predefined amount of virtual entities as a response to the
change of some metric. Hence, the reactive autoscaling
takes into account only the given parameters, which are
either provided by the cloud administrator or are measured
by the monitoring solution. The amount of change, i.e. the
number of virtual entities to be allocated or terminated, is
encoded as a set of rules. The most severe limitation of the
reactive autoscaling is the small amount of time allocated
for the scaling action in case of increased workload. The
most recent research tries to overcome it on the CSP’s side
by employing continuous (online) updates of the optimal
autoscaling configuration (Guo et al., 2018).

Each IaaS/PaaS/FaaS CSP provides its own native
reactive autoscaling solution. Following, we will provide
the brief information on the autoscaling solutions of AWS,
Microsoft and Google that were used for conducting the
experiments in the paper.

AWS (Amazon Web Services) Auto Scaling9 is a
part of the services offered by Amazon in its IaaS public
cloud. The core concept of AWS Auto Scaling is an
Auto Scaling Group (ASG). An ASG is a set of different
Amazon Elastic Compute Cloud (EC2) instances (VMs)
sharing similar characteristics and being subject to the
same scaling policies. Therefore, every VM in the group
has the same Amazon Machine Image (AMI) and the same
hardware characteristics. The load distribution among the
VMs is automated by the Elastic Load Balancer (ELB).
Amazon CloudWatch provides the performance data used
in the scaling rules.

Microsoft Azure Autoscale10 comes in two modes:
metric-based and scheduled. The metric-based Autoscale
service of Microsoft represents the common way of
autoscaling as in AWS case. The scheduled mode
allows the user to write a scaling schedule to adjust the
infrastructure according to time markers. Similar to AWS,
Azure also groups VM instances into a group that is
managed by its autoscaling solution. These groups are
called scaling sets. Despite the fundamental similarity
of scaling sets to auto scaling groups of AWS, they are
slightly different, e.g. user is not allowed to attach the
shell script to the VM template - the necessary file should
be provided directly in the VM image. Each scaling set
is scaled based on the Autoscale settings. The Autoscale
settings determine the capacity and the set of scaling rules
identifying the thresholds for different metrics.

Google Compute Engine (GCE) autoscaling11 is
based on a managed instance group. A managed instance
group is a scalable group of same virtual machines that
behaves as a uniform entity. Each group contains a
load balancer. GCE autoscaling is based on the metrics
provided by Google Stackdriver12. Out-of-the-box it
supports the autoscaling based solely on the average CPU
utilization. Moreover, Stackdriver introduces additional
metrics as well as the ability to create custom ones.

2.3.2. Scheduled Autoscaling. The reactive
autoscaling is appropriate for most of the practical
cases, though the time between the decision to scale-out
and the new instances being able to serve the requests may
impact the quality of service (QoS). A particular example
could be the Christmas season for the web shop. With the
rising number of customers, the virtual infrastructure may
not meet the demand, and the reactive autoscaling tries
to adapt the virtual infrastructure to the growing demand.
However, during the autoscaling process, the web site
may not have enough capacity to serve all the Christmas
orders which will result in the revenue decrease. On the

9https://aws.amazon.com/autoscaling/
10https://docs.microsoft.com/en-us/azure/architecture/best-

practices/auto-scaling
11https://cloud.google.com/compute/docs/autoscaler/
12https://cloud.google.com/stackdriver/



Multilayered Autoscaling Performance Evaluation ... 5

other hand, loosening the reactive autoscaling policies
could result in the overprovisioning and increase of the
costs. The partial solution to this problem is provided in
the form of scheduled autoscaling.

The concept of the scheduled autoscaling is simple.
Based on the knowledge of the load patterns, the
cloud administrator devises a scaling schedule which
contains the information on how many virtual entities
should be added or removed to or from the virtual
infrastructure/containerized application at the specific
time. Most CSPs offer scheduled autoscaling along with
the reactive autoscaling. AWS, for example, started to
provide the scheduled autoscaling service for applications
in 2017 13. Kubernetes also supports pods scheduling14.
The scheduled autoscaling could be combined with the
reactive autoscaling both to capture the expected load
changes and to react to the spontaneous variations.

2.3.3. Predictive Autoscaling. Certain drawbacks of
the widely used types of autoscaling could be avoided
by incorporating a smarter approach to autoscaling that
is able to extract value from the monitoring data. Pre-
dictive autoscaling (also known as proactive autoscaling)
leverages the historical data about the application and the
virtual infrastructure collected by the monitoring solution.
The collected historical data can be in various forms:
application traces, logs, time series, etc. These data are
needed for the derivation of the models used to extrapolate
the future values of the specific metrics. For example, the
collected requests per second time series could be used
to derive a model and forecast (predict, extrapolate) the
request per second value for a specific service at some
moment in the future.

In addition to the forecast, performance models
of the software and the virtual entity as well as a
management component implementing the autoscaling
are required (Bauer et al., 2017). With these components,
the predictive autoscaling solution 1) collects the
monitoring data for the forecasted parameter, 2) derives
the forecasting models, 3) derives the application and
virtual infrastructure performance models, 4) derives the
scaling policy that ensures the provision of such amount of
virtual entities that would be able to serve the forecasted
workload, 5) executes the scaling actions.

The predicitive autoscaling has to be dynamically
adapted to changes in the application and in the
user demand patterns. This includes updating the
prediction model, the performance models and the derived
scheduling policy.

Though predictive autoscaling is yet to be provided
by CSPs, various solutions are already widely represented

13https://aws.amazon.com/about-aws/whats-new/2017/11/scheduled-
scaling-now-available-for-application-auto-scaling/

14https://kubernetes.io/blog/2017/03/advanced-scheduling-in-
kubernetes/

in the research literature (Roy et al., 2011; Nikravesh
et al., 2015; Moore et al., 2013). Moreover, some
orchestration solutions contain predictive autoscaling as
work-in-progress 15.

As unpredictable changes in the load may also
happen in such a dynamic environment, predictive and
reactive autoscaling might be combined (Liu et al., 2015).

2.4. Evaluation of Autoscaling. The evaluation of
autoscaling could be conducted from different points of
view. First of all, one needs to distinguish between the
evaluation of autoscaling policies and the evaluation of
the autoscaling solution.

The autoscaling policy is a set of rules that
governs the autoscaling process, be it reactive, scheduled,
or predictive. An autoscaling policy evaluation
framework should provide the set of autoscaling
solution implementation-independent metrics that allow
to comprehensively evaluate the quality of the specific
autoscaling policy, e.g. the tendency to over- or
underprovision the resources, the frequency of the
scaling events, and the cost of the scaled virtual
infrastructure (Ilyushkin et al., 2017a). Although the
evaluation of the autoscaling policies with the various
metrics provides a useful decision-making framework
allowing to select the appropriate autoscaling policy
based on multiple criteria, it does not capture the
implementation-specific characteristics of the autoscaling
solution, e.g. its performance.

The performance could be measured by the time to
take a scaling decision and the time for starting additional
virtual entities. Another approach could be based on
user-level performance metrics, e.g., the number of QoS
violations for the applicaiton (Jindal et al., 2017). The
evaluation of the autoscaling solution performance using
both techniques is discussed further throughout the paper.

3. Approach to Evaluate the Autoscaling
Performance

3.1. Single-Layered Autoscaling Performance Eval-
uation. The main purpose of reactive autoscaling is to
react to the change in the application/virtual infrastructure
load. The reaction time or the autoscaling latency is the
time between the decision of the autoscaler and the final
adaptation of the resources (Jindal et al., 2017). For the
application level metrics, the fraction of the autoscaler
latency where the QoS requirements were violated is an
important metric.

The autoscaling latency can be defined based on
the Current Amount of Instances (CAI) and the De-
sired Amount of Instances (DAI). Each autoscalig solution

15https://github.com/mattjmcnaughton/kubernetes/tree/add-
predictive-autoscaling



6 V. Podolskiy, A. Jindal and M. Gerndt

contains autoscaling rules that determine conditions
triggering autoscaling actions (scale-in or scale-out in
the horizontal scaling case). As the deployment of the
virtual entity takes time for resource allocation, booting
and configuring, DAI will differ from CAI during some
time. When autoscaling is completed, CAI and DAI will
be equal. So, we consider the described time interval to
be the autoscaling latency. If tstart is the start time and
tend is the end time of autoscaling then the autoscaling
interval Tautoscale = [tstart, tend] is the interval such
that ∀t ∈ Tautoscale : CAI(t) 6= DAI(t). If ∀t ∈
TautoscaleCAI(t) < DAI(t) then Tautoscale is a scale-
out interval. If ∀t ∈ TautoscaleCAI(t) > DAI(t) then
Tautoscale is a scale-in interval. The autoscaling latency
is defined as tend − tstart.

Other performance measures for autoscaling
solutions are based on the notion of the quality of service
for the cloud application. For the autoscaling solution
performance evaluation, two user-level quality metrics
were chosen - a cloud application response time and the
maximal failure rate. They are directly influenced by the
quality of the corresponding autoscaling solution services.
These metrics have correspondent QoS limitations which
may be imposed by the cloud application users:

• Required Response Time (RRT);

• Required Maximal Failure Rate (RMFR).

To measure the performance of the autoscaling
solution, we now define the following two metrics:
response time violation and maximal failure rate violation.
Both are the fraction of the autoscaling interval where the
corresponding QoS requirement was violated.

As the performance metric for autoscaling is based
on the cloud application response time, we identify such a
metric as the fraction of the autoscaling interval Tautoscale

with the service response time (RT) above the threshold.
So, if Tautoscale = [ta, tb] and ThighRT = [tc, td] where
ta ≤ tc ≤ td ≤ tb then the autoscaling solution
performance metric can be computed as in (Jindal et al.,
2017):

RTV (Tautoscale) =
td − tc
tb − ta

(1)

RTV (Tautoscale) is the fraction of the autoscaling latency
where the response time requirement is violated. In more
complex cases, ThighRT could be a set of intervals, e.g.
ThighRT = {T (1)

highRT , T
(2)
highRT , ...T

(p)
highRT }.

Similar to RTV (Tautoscale), we compute the
fraction of the autoscaling interval with the maximal
failure rate (MFR) higher than a predefined threshold. If
Tautoscale = [ta, tb] and ThighMFR = [te, tf ] where
ta ≤ te ≤ tf ≤ tb, then ∀t ∈ ThighMFR then the
performance metric is computed as in (Jindal et al., 2017):

MFRV (Tautoscale) =
tf − te
tb − ta

(2)

Presented autoscaling performance metrics (1), (2)
allow to evaluate the performance of the autoscaling
solution directly without considering the particular
autoscaling policy implemented by the solution.

3.2. Performance Evaluation of Multilayered Au-
toscaling. The general idea behind the multilayered
autoscaling performance evaluation is to measure it
as a fraction of autoscaling time with violated QoS
requirements spanning multiple layers of virtualization.
Fig. 1 illustrates the concept of a multilayered autoscaling
interval and the multilayered autoscaling performance
measurement.

Fig. 1. An abstract example of a response time-based multilay-
ered autoscaling performance metric.

The multilayered autoscaling interval is a set of time
intervals on different layers of virtualization covering the
whole autoscaling event. The first two graphs in Fig. 1
show how the CPU utilization changes in response to the
change in the amount of requests. The two following
graphs highlight the change in the number of VMs and
pods in response to the increased CPU utilization (the rule
was set to increase the number of pods and VMs by one
after reaching the 10% CPU utilization and sustaining it
for 30 seconds). If we assume the QoS requirement of the
response time is 3 seconds as it is shown on the last graph,
then we can identify the fraction of the autoscaling time
interval during which the requirement on the response
time was not met. The approach for the multilayered



Multilayered Autoscaling Performance Evaluation ... 7

autoscaling performance evaluation closely follows this
example.

The main research problem for the multilayered
autoscaling performance evaluation is to identify a set
of autoscaling events on different virtualization layers
to be considered as a single autoscaling event spanning
multiple layers. In the methodology defined in the
paper (Jindal et al., 2017), this challenge is resolved
using the notion of the time locality, i.e. the scaling
events on multiple layers of virtualization are considered
to be the part of the same multilayered autoscaling event
if the autoscaling event on the previous virtualization
layer and on the next virtualization layer have the same
direction of scaling (scale-in or scale-out) and the event
of the dependent virtualization layer (e.g. containerized
application) follows the scaling event on the lower layer
(e.g. virtual infrastructure).

T
(1)
as = {T (1)

1 , T
(2)
1 , ...T

(n)
1 } is a set of autoscaling

intervals with T
(1)
i being an autoscaling interval on the

virtualization layer that is closest to the hardware (e.g.
native CSP’s autoscalers are on this level); superscripts
denote the layers, subscripts signify that an interval in
the set belongs to the particular multilayered autoscaling
interval, i.e. T

(1)
as . In turn, each element of the set

could also be the set of intervals on the corresponding
layer of virtualization. The intervals of time between
the autoscaling intervals are not taken into account
when computing the multilayered autoscaling duration
in order to reduce the effect of the performance of the
underlying hardware, though, dependent on the goals
of performance evaluation, one might attribute these
intervals to autoscaling duration.

In general, a single-layer autoscaling interval T (i)
1 is

considered as an element of the set of autoscaling intervals
for a single case of the multilayered autoscaling if and
only if ∀j : j > i we have the following conditions
fulfilled:

T
(i)
1 ≺ T

(i)
2 (3)

T
(i)
1 � T

(j)
1 (4)

CAI(tj)−DAI(tj)

|CAI(tj)−DAI(tj)|
· CAI(ti)−DAI(ti)

|CAI(ti)−DAI(ti)|
= 1 (5)

∀tj ∈ T
(j)
2 and ∀ti ∈ T

(i)
1 . Thus, in order to be considered

a part of the single multilayered autoscaling event, an
autoscaling on level i should 1) occur when all previous
layers have entered a stable state, i.e. CAI = DAI , after
the corresponding previous jth autoscaling has already
occured, and 2) be of the same direction (scale-in or
scale-out) as each of autoscalings on previous layers.

Example CAI/DAI plots for the two-layered
autoscaling case are presented in Fig. 2.

If A = {a1, a2, ...am} is a set of indices that
enumerates all the members of Tas, then the duration of

Fig. 2. Example of multilayered autoscaling events identifica-
tion for two-layered virtualization (virtual infrastructure
and containerized application).

the multilayered autoscaling can be determined with the
following formula:

∆Tas = |T (a1)
1 |+

m∑
i=1

(|T (ai+1)
1 |− |T (ai+1)

1 ∩T (ai)
1 |) (6)

Formula (6) takes into account a possible intersection
of the autoscaling intervals on different layers by adding a
delta of the interval further in time (if a pair of consecutive
intervals overlaps) or the whole interval (if a pair of
consecutive intervals does not overlap, i.e. T

(ai+1)
1 ∩

T
(ai)
1 = ∅). The formula (6) with respect to constraints

(3), (4), and (5) gives us an estimate for the duration of
the single autoscaling event for an arbitrary multilayered
cloud application. In the simplest case of two layers, the
formula becomes:

∆Tas = |T (1)
1 |+ (|T (2)

1 | − |T
(2)
1 ∩ T

(1)
1 |) (7)

In respect to metrics, previously introduced formulas
(1) and (2) are still in use, but the notion of the autoscaling
interval on which they are computed is changed:

Tautoscale =

m⋃
i=1

T
(ai)
1 (8)

The presented multilayered autoscaling performance
measurement approach is implemented in an autoscaling
performance measurement tool ScaleX which is discussed
in the following section.

Comparison with existing evaluation schemes.
The presented user-side autoscaling performance
evaluation approach and metrics should be considered
complimentary to the existing approaches and
metrics (Ilyushkin et al., 2017b; Evangelidis et al., 2017).
It is not designed to be the only one used when evaluating
the performance of the autoscaling solutions. Such
metrics as the overprovisioning, underprovisioning,
instability, cost of the overprovisioned virtual



8 V. Podolskiy, A. Jindal and M. Gerndt

infrastructure should also be measured and calculated
when evaluating an autoscaling solution. The proposed
metrics and approach are different from the existent
in that a) several virtualization levels are considered
when evaluating the performance, and b) the metrics are
designed to capture the user-side performance, i.e. what
user will encounter during the autoscaling process. Thus,
the approach and metrics necessary for the comprehensive
evaluation of the autoscaling solution’s performance.

4. ScaleX: An Autoscaling Performance
Measurement Tool

4.1. ScaleX Overview. ScaleX is a user-friendly web
service-based horizontal single-layered and multilayered
autoscaling performance measurement tool designed and
implemented by the authors (Jindal et al., 2017). The tool
is implemented in in Node.js. The architecture of ScaleX
and the communications between its modules in a typical
use case are shown in Fig. 3.

ScaleX is composed of multiple modules, overall
matching the microservice architecture. Each module
consists of components for handling a particular task.

Load Generator & 

Monitoring

Autoscaler

Deployment 

in Cloud

DB

Metrics Visualization

Lo
a

d
 G

e
n

e
ra

ti
o

n
 &

 

M
e

tr
ic

s 
co

ll
e

ct
io

n

User 

Selection

Metrics Store

GCE

Single-Layered Autoscaler

AWS

Azure

GCE

Kubernetes

AWS

Kubernetes

Azure

Kubernetes

Cooperative AutoscalerU
se

r In
te

rfa
ce

A
p

p
lica

tio
n

 

T
y

p
e

C
o

n
fig

u
ra

tio
n

 

P
a

ra
m

e
te

rs
Lo

a
d

 P
a

tte
rn

A
u

to
sca

le
r 

S
e

le
ctio

n
V

isu
a

liza
tio

n

Selected 

Autoscaler 

deployment

Fig. 3. High-level architecture of ScaleX.

Apart from measuring the performance of the
deployed autoscaling solution, ScaleX allows the
cloud application deployment for multiple CSPs native
autoscalers with a single command. With the same
command, the user may configure the autoscaling
parameters. Following subsections present the modules
of ScaleX.

4.2. User Interface. User Interface (UI) module
of ScaleX interacts with the user and provides him or
her an opportunity to select or configure different tool
parameters. It comprises five components, which are
discussed in the following paragraphs.

Application Type Setting Component enables the
selection of an application to be deployed for testing from
a list of predefined applications16.

The user can select an application from any of
these categories to conduct the tests of the autoscaling
solution(s) on it using a particular autoscaling decision
metric. At the moment, ScaleX supports only CPU
utilization as an autoscaling metric.

Configuration Parameters Component provides
the user with the autoscaling solution configuration
functionality. This component configures the chosen
autoscaling solution using parameter values specified
by the user. Each autoscaling solution supported by
ScaleX provides all important autoscaling configuration
parameters.

Single-Layered Autoscaler Configuration Compo-
nent allows to configure the horizontal scaling of the
virtual infrastructure based on a number of parameters:
type of instance, minimal and maximal number of
instances, scaling decision metric and its threshold,
autoscaling policy.

Multilayered Autoscaler Configuration Component
allows to configure the horizontal scaling for both the
virtual infrastructure and the containerized application17.
The configuration parameters for both virtualization
layers are configured by this component:

1. CSPs IaaS Autoscaler: all the parameters as listed for
the Single-Layered Autoscaler Component.

2. Kubernetes Horizontal Pod Autoscaler (HPA):
minimal and maximal number of pods and pod
scaling decision metric with its threshold. As of
now, only the CPU utilization is supported as the
autoscaling decision metric in Kubernetes.

Load Pattern Configuration Component provides
an interface to the workload request generator integrated
in the ScaleX. It allows user to select a preconfigured load
pattern in order to test the performance of the autoscaling
solution. At the moment, four load patterns are supported
by ScaleX:

• Linear Increase Load Pattern corresponds to the
linearly increasing number of requests per second
during the test time.

• Linear Increase and Constant Load Pattern
corresponds to the number of requests per second
pattern that linearly increases during the first half of
the test time and then stabilizes for the rest of the
test.

16This component also supports arbitrary application.
17The autoscaling of the containerized application is enabled via Ku-

bernetes orchestration tool.



Multilayered Autoscaling Performance Evaluation ... 9

• Random Load Pattern corresponds to the randomly
increasing and decreasing number of requests per
second during the test time.

• Triangle Load Pattern corresponds to the number of
requests per second pattern that linearly increases
during the first half of the test time and then
decreases with the same slope during the rest of the
test.

The user can configure the following parameters of
the load pattern selected: number of concurrent clients,
maximal number of requests, maximal duration of a test,
request timeout, HTTP request method, request body,
content type and number of requests per second.

Autoscaler Selection Component allows the user
to pick a supported autoscaling solution from the list.
A single-click functionality to deploy and undeploy
autoscaling solution is also provided.

Visualization Component shows plots and tables
for all the performance metrics. The user can use these
plots and tables to compare the autoscaling solutions.

4.3. Single-Layered Autoscaler Interface. ScaleX
comprises interfaces to the single-layered CSPs native
IaaS autoscaling solutions. This module supports the
deployment process for different CSPs native autoscaling
solutions. The purpose of this module is to combine
the configuration parameters with the selected application
and to deploy it using the chosen autoscaler. Currently,
3 CSPs native autoscaling solutions are supported by
ScaleX: GCE, AWS, and Azure. Following paragraphs
highlight the deployment procedure of these CSPs native
autoscaling solutions.

GCE Autoscaler. A common VM instance template
is created with a start script to deploy the application on
a VM start. This template is used as a basis to form the
managed instance group. The GCE autoscaling solution
is configured using the parameters provided by the user.
Following, a load balancer is created to direct the load
to the managed instance group. Stackdriver logging and
GCE monitoring are used to collect the metrics data for
this group.

AWS Autoscaler. At the starting point an instance
launch configuration is created with the same start script
that is used with GCE autoscaler to deploy the application
on a VM start. The launch configuration is used to form
an Auto Scaling Group (ASG) in AWS Cloud using the
user parameters. The scaling parameters and policies are
added to the ASG on the next step. To direct the load
to this ASG, an Elastic Load Balancer (ELB) is added.
ELB serves as the single endpoint for the load generation
workload - internally the load is distributed among the
ASG instances. AWS Cloud Watch is used to collect
the metrics data for the whole ASG as well as for the
individual EC2 instances.

Azure Autoscaler. At the beginning, a customized
VM image is created with a start script to deploy the
application when VM finishes booting. This image is then
used in the VM scale set for the replication along with the
user-defined autoscaling configuration parameters. The
VM scale set serves the same purpose as the managed
instance group in GCE or an ASG in AWS virtual
infrastructure. The load balancer is also added. Azure
monitoring APIs are used to collect the metrics for the
VM scale set.

Fig. 4 shows the deployment to test the
single-layered virtual infrastructure autoscaling solution
provided by IaaS CSP.

Load 

Balancer

Instance 1

Instance 2

Instance N

.

.

.

CSP’s Monitoring 

Service

CSP’s Scaling Group

Fig. 4. Deployment to test the single-layered virtual infrastruc-
ture autoscaling.

4.4. Multilayered Autoscaler Interface. In the scope
of this module, ScaleX combines the CSPs native IaaS
autoscaling solutions with the Kubernetes horizontal pod
autoscaler to form the two-layered autoscaling solution.
Additionally, the module combines the configuration
parameters with the selected application and deploys
in the selected IaaS cloud as a Kubernetes cluster.
A monitoring service is attached as the part of the
deployment to collect the performance metrics and store
these data in a database.

A multilayered autoscaler needs to enable the
synchronization between autoscaling solutions on
different virtualization layers. A sequence of actions
is undertaken by the module in order to enable the
synchronization. A separate VM instance is created for
Kubernetes master before starting the nodes (formerly
known as minions) as part of a managed instance group
in GCE, an ASG in AWS or a VM scale set in Azure.
Such a configuration allows to scale the nodes based on
the observed workload. ScaleX employs kubeadm18

18https://kubernetes.io/docs/setup/independent/create-cluster-
kubeadm/



10 V. Podolskiy, A. Jindal and M. Gerndt

to deploy the Kubernetes cluster. Kubeadm is used to
initialize the master. Once the master becomes ready, the
nodes can join it by running a specific command. A start
script is added as part of the each CSPs IaaS autoscaling
solution. This start script is modified to include all
the configurations and commands required by the VM
instance to join the Kubernetes cluster. Hence, when a
new instance is created in a managed instance group in
GCE, an ASG in AWS or a VM scale set in Azure, it
automatically joins the Kubernetes cluster. During the
scale-in, a VM instance to be terminated is removed
safely by the master from the Kubernetes cluster so
that no further pods are scheduled to run there, whereas
the pods that already run there are rescheduled to run
on other nodes. This mechanism adds the awareness
of the virtual infrastructure about the containerized
virtualization with pods, therefore the synchronization
between layers hinders the premature termination of the
VM with running pods by the native autoscaling solution
of the IaaS CSP.

The user parameters are used to configure the
Kubernetes cluster along with the scaling parameters
and policies in the CSPs IaaS autoscaler. The master
IP-address is used as the single endpoint for the generated
workload and internally master distributes the load
among Kubernetes cluster nodes. For collection of the
metrics from the Kubernetes cluster, ScaleX uses Heap-
ster19 coupled with the InfluxDB20. Both Heapster and
InfluxDB are deployed in the cluster with the chosen
application. Metrics data are continuously fetched by
ScaleX from both Heapster (data about the Kubernetes
cluster) and the native CSPs monitoring service (data for
CSPs instances and autoscaling group) and stored in the
database for visualization and analysis. Fig. 5 shows the
deployment to test the multilayered autoscaling solution.

Load 

Balancer

CSP’s Scaling Group

Instance 1

Pod 1 Pod 2

Instance 2

Pod 3

HPA

CSP’s Monitoring Service

Kube Cluster Monitoring 

Heapster

Fig. 5. Deployment to test the multilayered autoscaling.

19https://github.com/kubernetes/heapster
20https://www.influxdata.com/time-series-platform/influxdb/

4.5. Load Generator and Monitoring. This module
generates the workload of the desired pattern and directs
it to the IP address of the deployed application. ScaleX
employs the customized version of Node.js-based Load-
test21 for load generation. The number of clients
that generate the load and the load generation time
are configured for the selected load pattern. To
prevent a single load generation node from becoming
the bottleneck, the module implements the master-slave
architecture - the generation of the requests is distributed
among the slave nodes. After completion of each request,
the performance results are sent back to master node
and stored in the database. The monitoring part of the
component periodically fetches the data from different
monitoring services deployed as part of the autoscaling
solutions and stores them in the database for further
performance analysis. Fig 6 depicts the architecture of
the ScaleX load generator module.

Master Load 

Generator

Slave Load 

Generator

Slave Load 

Generator

Slave Load 

Generator

Autoscaler

Deployment in 

Cloud

DB

Fig. 6. Load generator architecture.

4.6. Database. ScaleX uses MongoDB to store the
performance data. The reason to choose MongoDB
as the storage for the performance data and generated
workload parameters is the support for high insert
rates. The drawback, however, is the missing transaction
safety, which in principle is not relevant for ScaleX.
An additional advantage of this NoSQL database is that
it supports storing the measurements with varying data
schema as the monitoring solutions used to collect the
performance and requests data employ different data
schemes.

5. Multilayered Autoscaling Performance
Evaluation

5.1. Experimental Setting. In our experiments, we
have used all workload patterns supported by ScaleX.
The total time for each test was 20 minutes; request

21https://www.npmjs.com/package/loadtest



Multilayered Autoscaling Performance Evaluation ... 11

timeout was 6.5 seconds. The number of simulated
concurrent clients for each load generation was 50,
they were deployed on the single VM instance not
participating in the experiment. For each pattern except
for random, the start value of request rate was 1 request
per second, whereas the increase/decrease was set to
3. The random load pattern starts at 50 requests per
second and increases/decreases randomly. The load
generation is distributed among the concurrent clients.
The compute-intensive test application computes the
sum of prime numbers between 1 and 1000000 when
called. Executing this computation from multiple clients
increases the CPU utilization, hence we can observe the
autoscaling solution effect on the deployment.

The VM configuration for experiments on different
clouds is provided in Table 1. The image of the operating
system used in every configuration was Ubuntu 16.04
LTS.

Table 1. Experimental VM configuration.
CSP Instance type Memory vCPUs
GCE - 2 GB 1 vCPU
AWS t2.small 2 GB 1 vCPU
Azure A1 V2 Standard 2 GB 1 vCPU

Table 2 highlights the configuration of Kubernetes
autoscaling. The target number of pods in a deployment
or replication controller is automatically adjusted based
on the formula:

Ntgt.pods =

⌈∑
pods Ucur.CPU

Utgt.CPU

⌉
(9)

In Eq. 9
∑

pods Ucur.CPU is the overall current pods
CPU utilization and Utgt.CPU is a target CPU utilization.
Table 3 contains the configuration settings for CSPs native
autoscalers.

Table 2. Experimental configuration: Kubernetes autoscaling
solution.

Instances Min. Max. Scaling Threshold
pods pods metric

1(master) 1 10 CPU 20 %
3(nodes) Utilization

Table 3. Experimental configuration: CSPs autoscaling solu-
tion.

Min. Max. Scaling Threshold
instances instances metric

1 3 CPU 20 %
Utilization

The experiment was conducted several times for each
combination of autoscaling solutions using the Multiple

Consecutive Trials (MCT) methodology. As the results
demonstrated relative stability in performance and in
scaling patterns, and we wanted to highlight autoscaling
behavioral features that might be lost by averaging, we
have chosen to show in the paper the results of a single
experiment. In future, ScaleX will be extended to support
the more accurate Randomized Multiple Interleaved Trials
(RMIT) methodology (Abedi and Brecht, 2017).

5.2. Experimental Results.

5.2.1. Evaluating the Performance of Multilayered
Autoscaling.

AWS Auto Scaling + Kubernetes. The data collected
in the scope of AWS Auto Scaling/Kubernetes experiment
demonstrate that the scale-out action conducted by the
native AWS autoscaling solution lags the scale-out action
by Kubernetes which results in the deployment of new
pods on a single VM (see rows B, C in Fig. 7).
This behavior indicates coordination problems between
multiple virtualization layers. The lack of coordination
leads to the deployment of new pods on the old VM
instances whereas the newly added VM could only have
a single pod (in particular, rows B, C in Fig. 7 show that
all the pods were started when the number of running
VMs was 1). Such a disproportion leads to load balancing
issues and results in the latency increase as is shown in
row D. The scale-in times for AWS Auto Scaling are
larger than scale-out times which is indicated by row C. A
possible explanation is that AWS Auto Scaling conducts
more time-consuming actions during the termination of
the VM. In B-1 and B-3 the current number of pods
is reduced although Kubernetes did not request this
reduction. The reason is, that the infrastructure scaling
decided to decommission VMs although pods were still
running there.

Microsoft Azure Autoscale + Kubernetes. Microsoft
Azure Autoscale demonstrates the slowest autoscaling
behavior (see row C in Fig. 8). Both scale-out and scale-in
times are significantly larger than for GCE and AWS.
Based on plots in rows D and E, we can conclude that
the overall performance of a single Azure VM instance
is higher than that of the competitors since with the
later scale-out (when compared to AWS and GCE) Azure
is still able to keep the performance on par with other
tested configurations. The most probable cause could be
the newer hardware used to host the VMs at Microsoft
datacenters. As it is possible to note in the Azure graphs
in rows B-E for all tested patterns, the performance mostly
depends on the underlying hardware and on the scaling of
Kubernetes pods, and not on the actual number of VMs.

Google Compute Engine (GCE) autoscaling + Ku-
bernetes. Based on rows D-E in Fig. 9, we can conclude



12 V. Podolskiy, A. Jindal and M. Gerndt

0

500

1000

1500

23:40 23:45 23:50 23:55 00:00 00:05 00:10 00:15 00:20

R
e
q
u
e
s
ts

 (
s
e
n
t)

0

1

2

3

4

5

6

7

8

9

10

23:40 23:45 23:50 23:55 00:00 00:05 00:10 00:15 00:20

N
u
m

b
e
r 

o
f 
K

u
b
e
rn

e
te

s
 P

o
d
 R

e
p
lic

a
s

Type of replicas count

Current replicas

Desired replicas

0

1

2

3

23:40 23:45 23:50 23:55 00:00 00:05 00:10 00:15 00:20

N
u
m

b
e
r 

o
f 
V

M
 i
n
s
ta

n
c
e
s

Type of nodes count

Current instances

Desired instances

0

2500

5000

7500

10000

23:40 23:45 23:50 23:55 00:00 00:05 00:10 00:15 00:20

L
a
te

n
c
y,

 m
s

Type of latency

Maximal Latency

Mean Latency

Minimal Latency

0

500

1000

1500

23:40 23:45 23:50 23:55 00:00 00:05 00:10 00:15 00:20

E
rr

o
rs

A
B

C
D

E

0

500

1000

1500

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

0

2500

5000

7500

10000

0

500

1000

1500

15:20 15:25 15:30 15:35 15:40 15:45 15:50 15:55 16:00 16:05

15:20 15:25 15:30 15:35 15:40 15:45 15:50 15:55 16:00 16:05

15:20 15:25 15:30 15:35 15:40 15:45 15:50 15:55 16:00 16:05

15:20 15:25 15:30 15:35 15:40 15:45 15:50 15:55 16:00 16:05

15:20 15:25 15:30 15:35 15:40 15:45 15:50 15:55 16:00 16:05

Type of replicas count

Current replicas

Desired replicas

Type of nodes count

Current instances

Desired instances

Type of latency

Maximal Latency

Mean Latency

Minimal Latency

0

500

1000

1500

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

0

2500

5000

7500

10000

0

500

1000

1500

14:15 14:20 14:25 14:30 14:35 14:40 14:45 14:50 14:55 15:00

14:15 14:20 14:25 14:30 14:35 14:40 14:45 14:50 14:55 15:00

14:15 14:20 14:25 14:30 14:35 14:40 14:45 14:50 14:55 15:00

14:15 14:20 14:25 14:30 14:35 14:40 14:45 14:50 14:55 15:00

14:15 14:20 14:25 14:30 14:35 14:40 14:45 14:50 14:55 15:00

Type of replicas count

Current replicas

Desired replicas

Type of nodes count

Current instances

Desired instances

Type of latency

Maximal Latency

Mean Latency

Minimal Latency

0

500

1000

1500

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

0

2500

5000

7500

10000

0

500

1000

1500

05:15 05:20 05:25 05:30 05:35 05:40 05:45 05:50 05:55

05:15 05:20 05:25 05:30 05:35 05:40 05:45 05:50 05:55

05:15 05:20 05:25 05:30 05:35 05:40 05:45 05:50 05:55

05:15 05:20 05:25 05:30 05:35 05:40 05:45 05:50 05:55

05:15 05:20 05:25 05:30 05:35 05:40 05:45 05:50 05:55

Type of replicas count

Current replicas

Desired replicas

Type of nodes count

Current instances

Desired instances

Type of latency

Maximal Latency

Mean Latency

Minimal Latency

Fig. 7. The graphical representation of the AWS/Kubernetes multilayered autoscaling solution. Columns (load patterns): 1) Linearly
increasing; 2) Linearly increasing and constant; 3) Random; 4) Triangle. Rows: A) Total number of requests sent; B) DAI and
CAI of Kubernetes pods; C) DAI and CAI of AWS VM instances; D) Response time; E) Requests failure rate.

that the GCE/Kubernetes deployment exhibits the best
performance. Looking deeper at row C, we can see a
cause for such a behavior - the most part of the experiment
interval is covered by the scaled-out VM instances. If
pod replicas are distributed over more VMs, they can
take a higher load. However, there is always a tradeoff
between the size of VMs, their number and the number
of pod replicas. For example, early VM scale-out will
result in cost increase. The experiments also show that
GCE autoscaling is faster at taking scaling decision and
providing the VM instances than AWS and Azure in the
scope of the evaluated case. Additional VMs are added
early and thus the new pods are better distributed which is
illustrated by rows B-C.

Discussion. The comparison of the AWS, Azure,
and GCE deployments for the tested case is conducted
using two metrics: 1) the amount of QoS violations;
2) the fraction of the autoscaling interval where the
QoS requirements were violated. In Tables 4 and 5
we summarize the number of QoS violations by load
pattern. A response time QoS requirement violation is
identified by the mean response time being higher than
6.5 s. Maximal failure rate QoS violation is arbitrarily
indicated by the amount of errors higher than 10. Table 6

goes into more details on the multilayered autoscaling
performance of the studied deployments.

The results in Tables 4 and 5 show that
GCE/Kubernetes deployment in the tested case
outperforms both AWS and Azure. The initial cause
for this is the fast decision-making process for VMs
instances scale-out that allows to distribute the new pods
more or less evenly. However, in respect to the amount of
requests ending up in error, results show no clear leader.
For example, the GCE/Kubernetes deployment shows
problems handling the Linear Increase and Random load
patterns in the tested case. If we refer to the errors plot
E-2 in Fig. 9, we might notice really small intervals with
high amount of errors.

The conclusion of the comparison might be
formulated in such a way that the GCE/Kubernetes
deployment provides the best autoscaling performance
for the experimental case without the careful selection
of the parameters for autoscaling policy (e.g. the CPU
threshold).

Table 6 summarizes parameters of all CSPs layer
scale-out intervals. Column RTV represents a fraction
of the autoscaling interval with the violated response
time requirement, whereas MFRV represents the same



Multilayered Autoscaling Performance Evaluation ... 13

0

500

1000

1500

07:05 07:10 07:15 07:20 07:25 07:30 07:35 07:40

R
e
q
u
e
s
ts

 (
s
e
n
t)

0

1

2

3

4

5

6

7

8

9

10

07:05 07:10 07:15 07:20 07:25 07:30 07:35 07:40

N
u
m

b
e
r 

o
f 
K

u
b
e
rn

e
te

s
 P

o
d
 R

e
p
lic

a
s

Type of replicas count

Current replicas

Desired replicas

0

1

2

3

07:05 07:10 07:15 07:20 07:25 07:30 07:35 07:40

N
u
m

b
e
r 

o
f 
V

M
 i
n
s
ta

n
c
e
s

Type of nodes count

Current instances

Desired instances

0

2500

5000

7500

10000

07:05 07:10 07:15 07:20 07:25 07:30 07:35 07:40

L
a
te

n
c
y,

 m
s

Type of latency

Maximal Latency

Mean Latency

Minimal Latency

0

500

1000

07:05 07:10 07:15 07:20 07:25 07:30 07:35 07:40

E
rr

o
rs

A
B

C
D

E

0

500

1000

1500

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

0

2500

5000

7500

10000

0

500

1000

06:15 06:20 06:25 06:30 06:35 06:40 06:45 06:50 06:55

06:15 06:20 06:25 06:30 06:35 06:40 06:45 06:50 06:55

06:15 06:20 06:25 06:30 06:35 06:40 06:45 06:50 06:55

06:15 06:20 06:25 06:30 06:35 06:40 06:45 06:50 06:55

06:15 06:20 06:25 06:30 06:35 06:40 06:45 06:50 06:55

Type of replicas count

Current replicas

Desired replicas

Type of nodes count

Current instances

Desired instances

Type of latency

Maximal Latency

Mean Latency

Minimal Latency

0

500

1000

1500

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

0

2500

5000

7500

10000

0

500

1000

05:30 05:35 05:40 05:45 05:50 05:55 06:00

05:30 05:35 05:40 05:45 05:50 05:55 06:00

05:30 05:35 05:40 05:45 05:50 05:55 06:00

05:30 05:35 05:40 05:45 05:50 05:55 06:00

05:30 05:35 05:40 05:45 05:50 05:55 06:00

Type of replicas count

Current replicas

Desired replicas

Type of nodes count

Current instances

Desired instances

Type of latency

Maximal Latency

Mean Latency

Minimal Latency

0

500

1000

1500

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

0

2500

5000

7500

10000

0

500

1000

01:10 01:15 01:20 01:25 01:30 01:35 01:40

01:10 01:15 01:20 01:25 01:30 01:35 01:40

01:10 01:15 01:20 01:25 01:30 01:35 01:40

01:10 01:15 01:20 01:25 01:30 01:35 01:40

01:10 01:15 01:20 01:25 01:30 01:35 01:40

Type of replicas count

Current replicas

Desired replicas

Type of nodes count

Current instances

Desired instances

Type of latency

Maximal Latency

Mean Latency

Minimal Latency

Fig. 8. The graphical representation of the Azure/Kubernetes multilayered autoscaling solution. Columns (load patterns): 1) Linearly
increasing; 2) Linearly increasing and constant; 3) Random; 4) Triangle. Rows: A) Total number of requests sent; B) DAI and
CAI of Kubernetes pods; C) DAI and CAI of Azure VM instances; D) Response time; E) Requests failure rate.

Table 4. Performance comparison based on the amount of re-
sponse time requirement QoS violations.

Load Amount of RT requirement violations
Pattern AWS Azure GCE
Linear
Increase

0 0 0

Linear
and
Con-
stant

17962 40934 250

Random 1545 2570 1127
Triangle 6418 15222 76

for the requirement on maximal failure rate. As not
all the deployments have exposed the clear synchronized
multilayered behavior, the autoscaling performance was
evaluated only during the scaling of VM instances groups.

We can observe a clear autoscaling performance
problem for Azure. It is not only the slowest, but also
exhibits more performance problems during the scaling
time. Scale-out times of other deployments for all the
patterns are mostly in the 5 - 30 seconds interval which
could be considered appropriate, although even these

Table 5. Performance comparison based on the amount of max-
imal failure rate QoS violations.

Load Amount of MFR requirement violations
Pattern AWS Azure GCE
Linear
Increase

0 0 382

Linear
and
Con-
stant

25707 42725 1251

Random 1720 2570 1835
Triangle 9954 16368 845

times can exhibit performance problems (refer to high
values of RTV and MFRV for 2nd AWS scale-out interval
for Linear Increase and Constant).

Results shown in Table 6 indicate that the
performance issues in the autoscaling solutions can be the
reason for QoS violations. Making autoscaling intervals
smaller and loosening thresholds in the autoscaling rules
do not necessarily help to increase the performance of
the solution during autoscaling as the old infrastructure
remains exposed to the arriving requests. Moreover, the



14 V. Podolskiy, A. Jindal and M. Gerndt

0

500

1000

1500

21:20 21:25 21:30 21:35 21:40 21:45 21:50 21:55 22:00 22:05

R
e
q
u
e
s
ts

 (
s
e
n
t)

0

1

2

3

4

5

6

7

8

9

10

21:20 21:25 21:30 21:35 21:40 21:45 21:50 21:55 22:00 22:05

N
u
m

b
e
r 

o
f 
K

u
b
e
rn

e
te

s
 P

o
d
 R

e
p
lic

a
s

Type of replicas count

Current replicas

Desired replicas

0

1

2

3

21:20 21:25 21:30 21:35 21:40 21:45 21:50 21:55 22:00 22:05

N
u
m

b
e
r 

o
f 
V

M
 i
n
s
ta

n
c
e
s

Type of nodes count

Current instances

Desired instances

0

2500

5000

7500

10000

21:20 21:25 21:30 21:35 21:40 21:45 21:50 21:55 22:00 22:05

L
a
te

n
c
y,

 m
s

Type of latency

Maximal Latency

Mean Latency

Minimal Latency

0

100

200

21:20 21:25 21:30 21:35 21:40 21:45 21:50 21:55 22:00 22:05

E
rr

o
rs

A
B

C
D

E

0

500

1000

1500

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

0

2500

5000

7500

10000

0

100

200

05:15 05:20 05:25 05:30 05:35 05:40 05:45 05:50 05:55 06:00

05:15 05:20 05:25 05:30 05:35 05:40 05:45 05:50 05:55 06:00

05:15 05:20 05:25 05:30 05:35 05:40 05:45 05:50 05:55 06:00

05:15 05:20 05:25 05:30 05:35 05:40 05:45 05:50 05:55 06:00

05:15 05:20 05:25 05:30 05:35 05:40 05:45 05:50 05:55 06:00

Type of replicas count

Current replicas

Desired replicas

Type of nodes count

Current instances

Desired instances

Type of latency

Maximal Latency

Mean Latency

Minimal Latency

0

500

1000

1500

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

0

2500

5000

7500

10000

0

100

200

01:25 01:30 01:35 01:40 01:45 01:50 01:55 02:00 02:05 02:10

01:25 01:30 01:35 01:40 01:45 01:50 01:55 02:00 02:05 02:10

01:25 01:30 01:35 01:40 01:45 01:50 01:55 02:00 02:05 02:10

01:25 01:30 01:35 01:40 01:45 01:50 01:55 02:00 02:05 02:10

01:25 01:30 01:35 01:40 01:45 01:50 01:55 02:00 02:05 02:10

Type of replicas count

Current replicas

Desired replicas

Type of nodes count

Current instances

Desired instances

Type of latency

Maximal Latency

Mean Latency

Minimal Latency

0

500

1000

1500

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

0

2500

5000

7500

10000

0

100

200

23:50 23:55 00:00 00:05 00:10 00:15 00:20 00:25 00:30 00:35

23:50 23:55 00:00 00:05 00:10 00:15 00:20 00:25 00:30 00:35

23:50 23:55 00:00 00:05 00:10 00:15 00:20 00:25 00:30 00:35

23:50 23:55 00:00 00:05 00:10 00:15 00:20 00:25 00:30 00:35

23:50 23:55 00:00 00:05 00:10 00:15 00:20 00:25 00:30 00:35

Type of replicas count

Current replicas

Desired replicas

Type of nodes count

Current instances

Desired instances

Type of latency

Maximal Latency

Mean Latency

Minimal Latency

Fig. 9. The graphical representation of the GCE/Kubernetes multilayered autoscaling solution. Columns (load patterns): 1) Linearly
increasing; 2) Linearly increasing and constant; 3) Random; 4) Triangle. Rows: A) Total number of requests sent; B) DAI and
CAI of Kubernetes pods; C) DAI and CAI of GCE VM instances; D) Response time; E) Requests failure rate.

time necessary for the application services to become
available for the requests was not taken into account.

5.2.2. Evaluating the Effect of the Container Image
Size and Pulling Policy on the Scaling Performance.
Creation and termination of microservice replicas is a
mechanism that enables the scaling on the containerized
application virtualization layer. With the differences in
the types of software used inside the containers, the actual
scaling time in the multilayered autoscaling case may
differ as the additional time is required to receive the
image that is used to create the container. This difference
could be attributed to the size of the image as well as its
actual location. For example, many users prefer to use
the centralized DockerHub repository of images. This
repository contains a vast number of container images
with different software combinations. Therefore one
needs to take into account the time that will be required
to get the container image over the network considering
the latency. This issue is usually resolved by adding a
local repository with the Docker container images. In this
subsection of the paper we’ve tried to make a point that
the parameters of container images and pulling policies
can be responsible for the changes in the scaling time of

the containerized applications.

In order to prove the hypothesis that the pulling
policy and container image size should be considered
when studying the scaling of the containerized
application, a small experiment was conducted on
11 container images taken from Docker Hub. During the
experiment, the time between scheduling the container
and its start was measured. The measurements were
conducted multiple times for Always Pull and If Not
Present policies for container images supported by
Kubernetes. The averaged results are provided in Table 7.

The pulling time in the conducted experiment does
not give a clear indication of the connection between the
pulling time when the image resides on Docker Hub and
its size, though for example the average pulling time for
6 smallest images is more than 2 times larger than the
average pulling time for 5 largest images. The outlier
pulling times for hello-world, python-alpine and java
images may be caused by the popularity of these images
and the limited capacity of Docker Hub. Though such a
small experiment does not provide the clear support for
the initial hypothesis, it highlights the fluctuations in the
pulling time which could be a reason for the slowdown
on the containerized application virtualization layer. As



Multilayered Autoscaling Performance Evaluation ... 15

Table 6. Performance of AWS, Azure, and GCE autoscaling so-
lutions for scale-out events

Load
Pattern

CSP Scale-
out

Scale-
out
Time,

RTV MFRV

seconds
Linear AWS 1st 28.06 0.00 0.00
Increase 2nd 9.03 0.00 0.00

Azure 1st 128.00 0.00 0.00
2nd 126.00 0.00 0.00

GCE 1st 8.01 0.00 0.00
2nd 12.01 0.00 0.00

Linear AWS 1st 17.03 0.00 0.00
Increase 2nd 28.08 0.73 0.88
and Azure 1st 128.00 0.85 0.92
Constant 2nd 123.00 0.92 0.94

GCE 1st 26.02 0.00 0.00
2nd 11.95 0.02 0.02

Random AWS 1st 33.08 0.00 0.00
2nd 15.01 0.00 0.00

Azure 1st 131.00 0.00 0.00
2nd 117.00 0.00 0.00

GCE 1st 11.01 0.00 1.00
2nd 7.99 0.00 0.00

Triangle AWS 1st 6.01 0.00 0.00
2nd 18.02 0.00 0.00

Azure 1st 155.00 0.86 0.91
2nd 128.00 0.00 0.00

GCE 1st 7.98 0.00 0.00
2nd 8.01 0.00 0.00

expected, in case of the locally present image, the pulling
time is significantly lower staying in the interval between
12 and 14 seconds for the tested cases. Local container
images repository may increase the performance of the
multilayered scaling though the additional resources will
be required to establish such a configuration.

6. Related Works
The fundamental principles of the autoscaling policies
performance evaluation were introduced by A.
Papadopoulos et al. (Papadopoulos et al., 2016). The
researchers describe an autoscaling policies performance
evaluation approach based on a chance constrained
optimization problem solved using the scenario theory.
The approach was implemented in the Performance Eval-
uation framework for Auto-Scaling (PEAS) and tested
on several existing autoscaling policies using 796 real
workload traces. The paper has also introduced several
distinct metrics to evaluate the autoscaling performance
with the core metrics of average number of under- and

Table 7. Docker image pulling time for different pulling poli-
cies: image present and image is on Docker Hub.

Image Size, Mb Pulling Pulling
time, s time, s

(present) (Docker Hub)
hello-world 0.00185 13 101
redis 27.8 12 66
nodejs-alpine 69.7 13 78
python-alpine 89.9 13 234
mongodb 368 13 98
mysql 445 12 55
java 584 14 300
nodejs 674 14 181
r 701 14 191
golang 715 14 272
python 912 14 183

over-provisioned resources.
The major contribution of the study by A. Ilyushkin

et. al. (Ilyushkin et al., 2017b) is a set of performance
metrics to estimate an autoscaling policy. The
set includes: under- and over-provisioning accuracy,
wrong-provisioning timeshare, instability, as well as
other user-oriented metrics, e.g. wait time, response
time, elastic slowdown, average number of resources,
average task throughput. Upon the listed metrics, authors
have built an approach to compare autoscalers using
pairwise comparison, fractional difference comparison,
and aggregated elasticity as well as some user metrics.
The developed approach and the metrics were applied
to selected existing autoscaling policies. Although
the presented approach and metrics allow to compare
different autoscaling policies, even authors admit that the
considered type of performance also heavily relies on the
type of application under consideration.

The technical report (L. Versluis, 2017) by L.
Versluis et al. highlights fundamental research questions
regarding the performance of different autoscaling
policies. This paper may be viewed as a comprehensive
extension of the discussed work by A. Ilyushkin et. al.
Using four different workloads from scientific, industrial,
and engineering domains, authors were able to prove that
the application domain actually heavily influences the
quality of the autoscaling results.

The performance estimation approach presented
by A. Evangelidis et al. (Evangelidis et al., 2017)
is based on probabilistic discrete-time Markov chains
models checking. The models checking is conducted
using the PRISM tool, which is a probabilistic model
checker for formal modelling and analysis of systems
with random or probabilistic behavior. Each policy is
encoded in PRISM tool with a set of user-defined model
parameters. By specifying the auto-scaling policy, the



16 V. Podolskiy, A. Jindal and M. Gerndt

model parameters, and running PRISM, the user would
be able to receive the estimates of probability that various
estimated performance parameters are lying in specified
intervals for different values of model parameters. The
identified most appropriate values of model parameters
could be used to adjust the autoscaling policy. Authors
have also conducted the validation of the study by using
the AWS public cloud testbed and ROC analysis.

K. Hwang et al. have outlined the generic
performance model for clouds of any type (Hwang et al.,
2016). The model encompasses a total of 19 metrics
divided into 3 abstraction levels: basic performance
metrics, cloud capabilities, cloud productivity. Multiple
metrics were applied to comprehensively estimate the
performance of scale-out, scale-up, and mixed scaling
modes on some real-world benchmarks and on the public
cloud providers.

The presented works concentrate on the evaluation
of autoscaling on the level of the virtual machines. These
works also consider the evaluation of the policies and
not of the implementation of autoscaling in commercial
clouds. Our approach extends the works towards multiple
autoscaling layers and investigating the important aspect
of overheads of real implementations.

7. Conclusion and Future Work
In this paper we have tried to summarize our theoretical
understanding of the autoscaling area and shed the
light on the performance evaluation for the multilayered
autoscaling solutions. The paper incorporates the
methodology and tools originally presented in (Jindal
et al., 2017). The multilayered autoscaling performance
evaluation methodology and ScaleX were applied in the
scope of the paper to enable the comparison of several
multilayered autoscaling solutions based on the virtual
infrastructure provided by public CSPs.

The results of the conducted comparison show that
for the multilayered autoscaling the performance not
only determined by the time taken for autoscaling bu
rather also by the time that decision to scale takes,
by the real hardware underlying VM instances, and
by the degree of synchronization between autoscaling
on different virtualization layers. With the unadjusted
autoscaling policies, the GCE/Kubernetes solution has
shown the best overall performance on the tested case
which could mostly be attributed to the overprovisioning
of VMs. Additionally, with another small experiment,
the influence of the container image pulling time on the
autoscaling quality was highlighted in the paper.

The study has indicated several future work
directions. The addition of support for the
Randomized Multiple Interleaved Trials (RMIT) testing
methodology (Abedi and Brecht, 2017) to ScaleX
will increase the accuracy of the evaluations made

using the tool. The support for automated autoscaling
policies testing with the specialized metrics given
by ScaleX (Ilyushkin et al., 2017a) will extend the
evaluation capabilities of the tool allowing to evaluate
both the autoscaling solutions and policies. By making
the load generation in ScaleX more flexible (generating
the load based on the data from logs and traces), the
behaviour of the autoscaling solutions could be studied in
conditions close to industrial cases. Yet another necessary
step would be the extension of the ScaleX’s functionality
to support the evaluation of the vertical autoscaling and
the autoscaling in hybrid cloud environments. With
all these possible extensions, ScaleX may find use
even in the business environments willing to test the
scaling capabilities of the virtual infrastructure and
the containerized application to find out the scaling
bottlenecks and get rid of them. Addition of the
recommending service to the evaluation tool may allow
the user to receive the insights from ScaleX on how the
autoscaling solutions should be set or which autoscaling
policy should be selected.

By implementing these extensions in ScaleX and
further polishing the evaluation methodology, we aim to
continue testing the autoscaling capabilities of the existing
solutions in different settings. Such tests will enable
us to better understand the complex area of the elastic
cloud applications. Nevertheless, the provided approach
may become inappropriate for the serverless paradigm.
Function-as-a-Service (FaaS) tries to hide the elasticity
of the virtual infrastructure from the user highlighting
only the scaling on the application level by changing
the number of function instances backed with the change
in the number of running containers (Lloyd et al.,
2018). Adapting the autoscaling solutions performance
evaluation methodology to this paradigm may become
another challenging research direction.

The next important step is to identify the
infrastructure and application parameters that influence
the quality of the scaling. Yet another barely covered
research problem is the influence of the application
structure on the actual scaling capabilities of the
application. The research in this area may uncover the
particular microservice application structures that have
bigger scaling potential than the other applications.

8. Availability
The source code of the ScaleX and the video manual are
available in the Git repository:

https://github.com/ansjin/ScaleX

9. Acknowledgements
The authors would like to express the gratitude to the
anonymous reviewers of the paper that provided their



Multilayered Autoscaling Performance Evaluation ... 17

valuable comments to improve the paper.

References
Abedi, A. and Brecht, T. (2017). Conducting repeatable

experiments in highly variable cloud computing
environments, Proceedings of the 8th ACM/SPEC on
International Conference on Performance Engineering,
ICPE ’17, ACM, New York, NY, USA, pp. 287–292.

Al-Dhuraibi, Y., Paraiso, F., Djarallah, N. and Merle, P. (2017).
Autonomic vertical elasticity of docker containers with
elasticdocker, 2017 IEEE 10th International Conference
on Cloud Computing (CLOUD), pp. 472–479.

Bauer, A., Herbst, N. and Kounev, S. (2017). Design and
evaluation of a proactive, application-aware auto-scaler:
Tutorial paper, Proceedings of the 8th ACM/SPEC on Inter-
national Conference on Performance Engineering, ICPE
’17, ACM, New York, NY, USA, pp. 425–428.

Bondi, A. B. (2000). Characteristics of scalability and their
impact on performance, Proceedings of the 2Nd Interna-
tional Workshop on Software and Performance, WOSP
’00, ACM, New York, NY, USA, pp. 195–203.

Evangelidis, A., Parker, D. and Bahsoon, R. (2017).
Performance modelling and verification of cloud-based
auto-scaling policies, Proceedings of the 17th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Com-
puting, CCGrid ’17, IEEE Press, Piscataway, NJ, USA,
pp. 355–364.

Guo, Y., Stolyar, A. and Walid, A. (2018). Online vm
auto-scaling algorithms for application hosting in a cloud,
IEEE Transactions on Cloud Computing pp. 1–1.

Herbst, N. R., Kounev, S. and Reussner, R. (2013). Elasticity in
cloud computing: What it is, and what it is not, Proceed-
ings of the 10th International Conference on Autonomic
Computing (ICAC 13), USENIX, San Jose, CA, pp. 23–27.

Hwang, K., Bai, X., Shi, Y., Li, M., Chen, W. G. and Wu,
Y. (2016). Cloud performance modeling with benchmark
evaluation of elastic scaling strategies, IEEE Transactions
on Parallel and Distributed Systems 27(1): 130–143.

Ilyushkin, A., Ali-Eldin, A., Herbst, N., Papadopoulos,
A. V., Ghit, B., Epema, D. and Iosup, A. (2017a).
An experimental performance evaluation of autoscaling
policies for complex workflows, Proceedings of the 8th
ACM/SPEC on International Conference on Performance
Engineering, ICPE ’17, ACM, New York, NY, USA,
pp. 75–86.

Ilyushkin, A., Ali-Eldin, A., Herbst, N., Papadopoulos,
A. V., Ghit, B., Epema, D. and Iosup, A. (2017b).
An experimental performance evaluation of autoscaling
policies for complex workflows, Proceedings of the 8th
ACM/SPEC on International Conference on Performance
Engineering, ICPE ’17, ACM, New York, NY, USA,
pp. 75–86.

Jakobik, A., Grzonka, D. and Kolodziej, J. (2017). Security
supportive energy aware scheduling and scaling for cloud
environments, European Conference on Modelling and
Simulation, ECMS 2017, Budapest, Hungary, May 23-26,
2017, Proceedings., pp. 583–590.

Jindal, A., Podolskiy, V. and Gerndt, M. (2017). Multilayered
cloud applications autoscaling performance estimation,
2017 IEEE 7th International Symposium on Cloud and
Service Computing (SC2), pp. 24–31.

L. Versluis, M. Neacsu, A. I. (2017). Technical Report: A
Trace-Based Performance Study of Autoscaling Workloads
of Workflows in Datacenters, TR 1711.08993v1, Vrije
Universiteit Amsterdam.

Liu, Y., Rameshan, N., Monte, E., Vlassov, V. and Navarro, L.
(2015). Prorenata: Proactive and reactive tuning to scale a
distributed storage system, 2015 15th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing,
pp. 453–464.

Lloyd, W., Ramesh, S., Chinthalapati, S., Ly, L. and Pallickara,
S. (2018). Serverless computing: An investigation of
factors influencing microservice performance, 2018 IEEE
International Conference on Cloud Engineering (IC2E),
pp. 159–169.

Moore, L. R., Bean, K. and Ellahi, T. (2013). Transforming
reactive auto-scaling into proactive auto-scaling, Proceed-
ings of the 3rd International Workshop on Cloud Data
and Platforms, CloudDP ’13, ACM, New York, NY, USA,
pp. 7–12.

Nikravesh, A. Y., Ajila, S. A. and Lung, C.-H. (2015). Towards
an autonomic auto-scaling prediction system for cloud
resource provisioning, Proceedings of the 10th Interna-
tional Symposium on Software Engineering for Adaptive
and Self-Managing Systems, SEAMS ’15, IEEE Press,
Piscataway, NJ, USA, pp. 35–45.

Papadopoulos, A. V., Ali-Eldin, A., Arzen, K.-E., Tordsson,
J. and Elmroth, E. (2016). Peas: A performance
evaluation framework for auto-scaling strategies in cloud
applications, ACM Trans. Model. Perform. Eval. Comput.
Syst. 1(4): 15:1–15:31.

Roy, N., Dubey, A. and Gokhale, A. (2011). Efficient
autoscaling in the cloud using predictive models for
workload forecasting, 2011 IEEE 4th International Con-
ference on Cloud Computing, pp. 500–507.

Sotomayor, B., Montero, R. S., Llorente, I. M. and Foster,
I. (2009a). Resource leasing and the art of suspending
virtual machines, Proceedings of the 2009 11th IEEE In-
ternational Conference on High Performance Computing
and Communications, HPCC ’09, IEEE Computer Society,
Washington, DC, USA, pp. 59–68.

Sotomayor, B., Montero, R. S., Llorente, I. M. and Foster, I.
(2009b). Virtual infrastructure management in private and
hybrid clouds, IEEE Internet Computing 13(5): 14–22.



18 V. Podolskiy, A. Jindal and M. Gerndt

Prof. Dr. Michael Gerndt. Michael Gerndt re-
ceived a Ph.D. in Computer Science in 1989 from
the University of Bonn. In 1990 and 1991, he
held a postdoc position at the University of Vi-
enna and joined Julich Research Centre in 1992.
He habilitated in 1998 at the Technical University
of Munich (TUM). Since 2000 he is professor for
architecture of parallel and distributed systems
at TUM. His research focuses on the resources
management in cloud environments and on the

programming models and tools for scalable parallel architectures.

Vladimir Podolskiy. Vladimir is a Ph.D. student
at TUM and a DAAD scholar. His research in-
terests are in the area of predictive cloud appli-
cations autoscaling, evaluation of the autoscaling
solutions and scalable middleware for Internet of
Things. He graduated in 2014 from the Bauman
Moscow State Technical University (BMSTU),
Russia. Prior to starting his Ph.D., he worked
for several years at IBS Group as the analyst and
software architect.

Anshul Jindal. Anshul is a Ph.D student at
TUM. His research interests include cloud com-
puting, autoscaling and performance predictions
of microservices. He has completed his Master of
Science in Informatics in the year of 2018 from
TUM, Germany. Prior to starting his Master stud-
ies, he had worked for 2 years at Samsung Re-
search Institute Bangalore, India as senior soft-
ware engineer.

Received:
Accepted:

View publication statsView publication stats

https://www.researchgate.net/publication/332753877

	Introduction
	Theoretical Framework and Background
	Scalability & Elasticity
	Changing the Cloud Capacity through Scaling
	Types of Scaling
	Scaling the Virtual Infrastructure
	Scaling Containerized Applications
	Multilayered & Cooperative Scaling

	Autoscaling
	Reactive Autoscaling
	Scheduled Autoscaling
	Predictive Autoscaling

	Evaluation of Autoscaling

	Approach to Evaluate the Autoscaling Performance
	Single-Layered Autoscaling Performance Evaluation
	Performance Evaluation of Multilayered Autoscaling

	ScaleX: An Autoscaling Performance Measurement Tool
	ScaleX Overview
	User Interface
	Single-Layered Autoscaler Interface
	Multilayered Autoscaler Interface
	Load Generator and Monitoring
	Database

	Multilayered Autoscaling Performance Evaluation
	Experimental Setting
	Experimental Results
	Evaluating the Performance of Multilayered Autoscaling
	Evaluating the Effect of the Container Image Size and Pulling Policy on the Scaling Performance


	Related Works
	Conclusion and Future Work
	Availability
	Acknowledgements

