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Abstract—The main feature of a cloud application is its
scalability. Major IaaS cloud services providers (CSP) employ
autoscaling on the level of virtual machines (VM). Other
virtualization solutions (e.g. containers, pods) can also scale. An
application scales in response to change in observed metrics,
e.g. in CPU utilization. Occasionally, cloud applications exhibit
the inability to meet the Quality of Service (QoS) requirements
during the scaling caused by the reactivity of autoscaling
solutions. This paper provides the results of the autoscaling per-
formance evaluation for two-layered virtualization (VMs and
pods) conducted in the public clouds of AWS, Microsoft and
Google using the approach and the Autoscaling Performance
Measurement Tool developed by the authors [5], [6].

Keywords-autoscaling performance; autoscaling; multilay-
ered autoscaling; cloud computing

I. INTRODUCTION

Scalability became the main feature of cloud infrastructure
and services [10], [8]. As the customer base tends to
change rapidly, the once perfectly fitting data center becomes
obsolete in an instant. laaS autoscaling technology allows
to dynamically adjust the number of VMs as long as there
is free hardware capacity left in the cloud [4]: if a web-
shop hosted in the cloud experiences an increase in requests,
additional VMs could be provided to cope with the load;
vice-versa, the VM instances could also be automatically
terminated in case of traffic decrease. Currently, autoscaling
is used to find a balance between providing high quality
services and minimizing the costs induced by cloud usage.

TaaS autoscaling solutions adjust the virtualized resources
in response to a changing demand resulting in the changing
virtualized resources utilization. Such solutions as Kuber-
netes and Docker Swarm support the autoscaling on the
level of application services. Thus, the number of service
instances is adapted to fit the demand and is balanced
across the provided hardware resources and/or VMs. De-
spite the differences in the approaches to virtualization, the
autoscaling solutions share the common reactive approach
to autoscaling of the virtualized resources and services.

The goal of the research was to identify whether the re-
active nature of autoscaling solutions jeopardizes the ability
of cloud applications to meet the QoS requirements under
the dynamically changing load. To evaluate the reactive
autoscaling solutions, we have tested combinations of AWS
Auto Scaling, Azure Autoscale, Google Compute Engine

Autoscaling with Kubernetes horizontal scaling of pods.
The experiments were conducted using the Autoscaling
Performance Measurement Tool (APMT) developed by one
of the authors [6]. The approach originally presented in
the paper [5] was used to evaluate the performance of the
autoscaling solutions.

The comparison of autoscaling solutions and the discus-
sion is provided in the following section. The third section
contains the overview of the related works. The last section
concludes the paper and provides future research directions.

II. COMPARISON OF THE AUTOSCALING SOLUTIONS
A. Evaluation Tool

For the purpose of evaluation, the Autoscaling Perfor-
mance Measurement Tool was employed. APMT collects the
performance data (latency, and number of failed requests)
for several laaS autoscaling solutions, currently including
AWS Auto Scaling, Azure Autoscale, and Google Compute
Engine Autoscaling. The support for Kubernetes horizontal
scaling of pods is also included to enable the evaluation
of the autoscaling performance for the multilayered cloud
applications. The description of the tool is not provided due
to space limitations, it could be found in [6].

B. Experimental Setting

All four workload patterns currently supported by APMT
were used in the tests: linear increase, linear increase and
constant, random, and triangle. The total time for each
test was 20 minutes; request timeout was kept to 6.5
seconds. The number of simulated concurrent clients was
50, they were deployed on the single VM instance not
participating in the experiment. For each pattern (except for
random) the start value of requests rate was 1, whereas
the increase/decrease step was set to be 3. The random
load pattern starts at 50 requests and increases/decreases
randomly. The requests load generation was uniformly dis-
tributed among the concurrent clients. The test application
(compute-intensive) computed the sum of prime numbers
between 1 and 1000000 when called.

The VM configuration is provided in Table I.

Table II depicts the configuration of Kubernetes autoscal-
ing solution. Table III contains the configuration settings for
CSPs native autoscalers.



Table I
EXPERIMENTAL VM CONFIGURATION

CSP Instance type | Memory | vCPUs OS Image
AWS t2.small 2 GB 1 vCPU | Ubuntu 16.04
Microsoft A1_V2 Std. 2 GB 1 vCPU | Ubuntu 16.04
Google - 2 GB 1 vCPU | Ubuntu 16.04
Table II

EXPERIMENTAL CONFIGURATION: KUBERNETES AUTOSCALER

Instances Min. pods | Max. pods | Scaling Threshold
metric

I (master) 1 10 CPU 20 %

3(minions) Utilization

C. Experimental Results

The experiment was conducted several times for each
combination of autoscaling solutions. As the results demon-
strated relative stability in performance and scaling patterns
and we wanted to highlight autoscaling behavioral features
that might be lost by averaging, we have chosen the results
of the single experiment. For the sake of brevity, the graphs
are only provided for the single load pattern - linear load
increase followed by the constant value of the load.

1) AWS Auto Scaling + Kubernetes: The data collected
in the scope of AWS Auto Scaling/Kubernetes experiment
demonstrate that the scale-out action conducted by the
native AWS autoscaling solution lags the scale-out action
by Kubernetes which results in the deployment of new pods
on a single VM (see rows B, C of column 1 in Fig. 1). This
behavior indicates potential coordination problems between
multiple virtualization layers. The lack of coordination could
lead to the deployment of new pods on the old VM instances
set during the scale-out, whereas the newly added VM could
only have single pod. Such a disproportion could lead to load
balancing issues and may result in the latency increase as
is shown in row D of the first column. The scale-in times
for AWS Auto Scaling are larger than scale-out times which
is indicated by the plot C-1. A possible explanation is that
AWS Auto Scaling conducts more time-consuming actions
during the termination of the VM. For the linear increase and
random load patterns not presented in the figure, the current
number of pods was reduced although Kubernetes did not
request this reduction. The reason is that the infrastructure
scaling decided to decommission VMs although pods were
still running there.

2) Microsoft Azure Autoscale + Kubernetes: Microsoft
Azure Autoscale demonstrates the slowest autoscaling be-
havior (refer to plot C-2 in Fig. 1). Both scale-out and scale-

Table III
EXPERIMENTAL CONFIGURATION: CSPS AUTOSCALER

Min. instances

Max. instances

Scaling metric

Threshold

1

3

CPU Utilization

20 %

in times are significantly larger than for GCE and AWS for
all the load patterns tested. It is possible to note in the Azure
graphs in rows B-E that the performance heavily relies on
the underlying hardware and on the scaling of Kubernetes
pods, and not on the actual number of VMs. This behavior
is even more evident for the other three tested load patterns,
excluded from the figure for the sake of brevity.

3) Google Compute Engine (GCE) autoscaling + Kuber-
netes: Rows D-E in column 3 of Fig. 1 show that the
GCE/Kubernetes installation exhibits the best performance
among tested configurations. Looking at the plot C-3, we
can see a cause for such a behavior - the most part of
the experiment interval is covered by the scaled-out VM
instances. If pod replicas are distributed over more VMs,
they can take a higher load. However, there is always a trade-
off between the size of VMs, their number and the number of
pod replicas. For example, early VMs scale-out could result
in the cost increase. The experiments also show that GCE
autoscaling is faster at taking scaling decision and providing
the VM instances than AWS and Azure. Additionally, the
best coordination between the native autoscaling solution
and Kubernetes autoscaling is exposed by GCE/Kubernetes
installation as illustrated by rows B-C in column 3 - new
pods are mostly added after the new VM instance was added.

4) Autoscaling Solutions Comparison: The comparison
of the AWS, Azure, and GCE installations is conducted
using two metrics: 1) the amount of QoS violations; 2)
the fractions of the autoscaling intervals where the QoS
requirements were violated. In the Table IV the number of
QoS violations by load pattern are summarized. A violation
of the latency QoS requirement is identified by the mean
latency being higher than 2.5 seconds. Errors QoS violation
is indicated by the amount of errors being higher than
10. Table V provides performance evaluation during the
autoscaling events using the method described in [5].

The results in the Table IV show that GCE/Kubernetes
installation outperforms AWS and Azure. The initial cause
is the fast decision-making process for VMs instances scale-
out coupled with the synchronization of the autoscaling on
VMs and pods layers. However, in respect to the amount of
requests ending up in error, results show no clear leader.

GCE/Kubernetes installation shows problems handling
linear increase and random load patterns. If we refer to
the errors plot E-3 in Fig. 1, we might notice really
small intervals with high amount of errors. Turns out that
GCE/Kubernetes solution exhibits a denser structure of the
responses ending up in error codes returned. For the sake of
brevity, we do not provide the zoomed version of this plot.

The Table V summarizes parameters of all CSPs layer
scale-out intervals. Column HL represents a fraction of the
autoscaling interval with the violated mean latency QoS,
whereas FR represents the same for the number of requests
ending with time-out error. As not all the installations have
exposed the clear synchronized multilayered behavior, we
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Figure 1. The results of the multilayered autoscaling evaluation for the linear increase and constant pattern. Rows: A) Number of requests sent; B) Desired

and current amount of Kubernetes pods; C) Desired and current amount of VM instances; D) Minimal, Mean, and Maximal latency; E) Number of errors.

Table IV
PERFORMANCE COMPARISON BASED ON THE AMOUNT OF QOS
VIOLATIONS
Load Amount of latency breaks | Amount of errors breaks
Pattern AWS Azure GCE AWS Azure GCE
Linear 0 0 0 0 0 382
In-
crease
Linear 17962 | 40934 250 25707 | 42725 1251
and
Con-
stant
Random 1545 2570 1127 1720 2570 1835
Triangle 6418 15222 76 9954 16368 845

have evaluated autoscaling performance during the scaling
of VMs.

Results shown in Table V indicate that autoscaling may
result in the performance issues and QoS requirements
violations. Making scaling intervals smaller and loosening
thresholds in the autoscaling rules does not necessarily help
to increase the performance of the installation during the
autoscaling as the old infrastructure remains exposed to the

arriving requests. We can also observe a clear autoscaling
performance problem for Azure. Scale-out times of other
installations for all the patterns are mostly in the 5 - 30
seconds interval which could be considered appropriate.

III. RELATED WORKS

The principles of the autoscaling policies performance
evaluation were introduced by A. Papadopoulos et al. [9].
The performance estimation approach presented by A. Evan-
gelidis et al. [1] is based on probabilistic discrete-time
Markov chains models checking. The major contribution of
the study by A. Ilyushkin et. al. [3] is a set of performance
metrics to estimate each autoscaling policy. The technical
report [7] by L. Versluis et al. highlights that the applica-
tion domain actually heavily influences the performance of
the autoscaler. K. Hwang et al. have outlined the generic
performance model for clouds of any type with a total of 19
metrics divided into 3 abstraction levels: basic performance
metrics, cloud capabilities, cloud productivity [2].



Table V
PERFORMANCE OF AWS, AZURE, AND GCE AUTOSCALING SOLUTIONS
FOR SCALE-OUT EVENTS

Load Pat- | Installation Scale- Atoscaling | HL FR
tern out Time,
seconds
Linear AWS 15% 28.06 0.00 0.00
Increase ond 9.03 0.00 | 0.00
Azure 15t 128.00 0.00 0.00
ond 126.00 0.00 0.00
GCE 15t 8.01 0.00 0.00
2nd 12.01 0.00 | 0.00
Linear AWS 15% 17.03 0.00 0.00
Increase ond 28.08 0.73 0.88
and Azure 15t 128.00 0.85 0.92
Constant ond 123.00 0.92 0.94
GCE 15t 26.02 0.00 0.00
ond 11.95 0.02 0.02
Random AWS 15% 33.08 0.00 0.00
ond 15.01 0.00 0.00
Azure 15t 131.00 0.00 0.00
2nd 117.00 0.00 | 0.00
GCE 157 11.01 0.00 1.00
ond 7.99 0.00 0.00
Triangle AWS 157 6.01 0.00 | 0.00
ond 18.02 0.00 0.00
Azure 15t 155.00 0.86 0.91
ond 128.00 0.00 0.00
GCE 15% 7.98 0.00 0.00
ond 8.01 0.00 0.00

IV. CONCLUSION

The results of the conducted comparison show that a real
impact on the performance characteristics of multilayered
cloud applications could be produced by the time that
decision to scale takes, as well as by the real hardware
underlying VM instances, and by the degree of synchroniza-
tion between autoscaling on different virtualization layers. In
the untuned case, GCE/Kubernetes solution shows the best
overall performance which could be attributed to the over-
provisioning of VMs.

The study has indicated several future research directions:
1) dimension of scaling - to identify when to scale the
number of VMs or change the type of VMs used in Kuber-
netes cluster; 2) intelligent cross-layer policies - to identify
which information on Kubernetes level could help in taking
the decision on the infrastructure level; 3) interaction of
autoscaling decisions for different services - to synchronize
the real applications scaling decisions over multiple services
of the application.

The performance pitfalls follow the reactive nature of
the autoscaling solutions. In order to avoid these pitfalls,
the predictive autoscaling techniques might be used. Using
the forecasting models for load prediction, the performance
models of the virtual entities to determine the load that could
be taken by the virtual entity instance without violating
the QoS requirements, one can plan the scaling actions

in advance and thus overcome the highlighted scalability
performance issues.

REFERENCES

[1] Alexandros Evangelidis, David Parker, and Rami Bahsoon.
Performance modelling and verification of cloud-based auto-
scaling policies. In Proceedings of the 17th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Computing,
CCGrid 17, pages 355-364, Piscataway, NJ, USA, 2017.
IEEE Press.

[2] K. Hwang, X. Bai, Y. Shi, M. Li, W. G. Chen, and Y. Wu.
Cloud performance modeling with benchmark evaluation of
elastic scaling strategies. /EEE Transactions on Parallel and
Distributed Systems, 27(1):130-143, Jan 2016.

[3] Alexey Ilyushkin, Ahmed Ali-Eldin, Nikolas Herbst, Alessan-
dro V. Papadopoulos, Bogdan Ghit, Dick Epema, and Alexan-
dru Iosup. An experimental performance evaluation of au-
toscaling policies for complex workflows. In Proceedings of
the 8th ACM/SPEC on International Conference on Perfor-
mance Engineering, ICPE 17, pages 75-86, New York, NY,
USA, 2017. ACM.

[4] D. Jayasinghe, S. Malkowski, J. Li, Q. Wang, Z. Wang,
and C. Pu. Variations in performance and scalability: An
experimental study in iaas clouds using multi-tier workloads.
IEEE Transactions on Services Computing, 7(2):293-306,
April 2014.

[5] A. Jindal, V. Podolskiy, and M. Gerndt. Multilayered cloud
applications autoscaling performance estimation. In 20717
IEEE 7th International Symposium on Cloud and Service
Computing (SC2), pages 24-31, Nov 2017.

[6] Anshul Jindal, Vladimir Podolskiy, and Michael Gerndt.
Autoscaling performance measurement tool. In Companion
of the 2018 ACM/SPEC International Conference on Perfor-
mance Engineering, ICPE ’18, pages 91-92, New York, NY,
USA, 2018. ACM.

[7]1 A. Iosup L. Versluis, M. Neacsu. Technical Report: A Trace-
Based Performance Study of Autoscaling Workloads of Work-
flows in Datacenters. TR 1711.08993v1, Vrije Universiteit
Amsterdam, nov 2017.

[8] D. Moldovan, H. L. Truong, and S. Dustdar. Cost-aware
scalability of applications in public clouds. In 2016 IEEE In-
ternational Conference on Cloud Engineering (IC2E), pages
79-88, April 2016.

[9] Alessandro Vittorio Papadopoulos, Ahmed Ali-Eldin, Karl-
Erik Arzen, Johan Tordsson, and Erik Elmroth. Peas: A
performance evaluation framework for auto-scaling strategies
in cloud applications. ACM Trans. Model. Perform. Eval.
Comput. Syst., 1(4):15:1-15:31, August 2016.

[10] N. Serrano, G. Gallardo, and J. Hernantes. Infrastructure as a
service and cloud technologies. IEEE Software, 32(2):30-36,
Mar 2015.


https://www.researchgate.net/publication/327806022

