
Scalable Infrastructure and Workflow for Anomaly
Detection in an Automotive Industry

1st Anshul Jindal, 2nd Michael Gerndt
Chair of Computer Architecture and Parallel Systems

Technical University of Munich
Garching (near Munich), Germany

anshul.jindal@tum.de, gerndt@in.tum.de

3rd Mario Bauch, 4th Hachim Haddouti
OTD Platform and Services

Munich, Germany

Abstract—Anomalies are unexpected instances which signifi-
cantly deviate from the normal patterns formed by the majority
of a dataset. The more an observation deviate from the normal
pattern, the more likely it is an anomaly. The continuous increase
in the number of car models and configuration possibilities has
led to continuous increase in the complexity of logistics supply
chain and production. Consequently, it has become difficult
to manage the whole IT Landscape, a small anomaly/failure
somewhere in the system could lead to a huge loss of money.
Therefore, to identify and ultimately resolve quickly a problem
in such a system is highly important.

This paper addresses the challenge of identifying anomalies in
a scalable way. The new data collected suffers from the problem
of lack of labels for training. This challenge is addressed in the
developed solution by using multiple unsupervised algorithms
and reporting those observation as anomalies which are com-
monly reported as anomalies by all the algorithms. The developed
solution also tackles the problem of data heterogeneity and big
size by using Spark underneath for scalable data processing.
Scalability test results demonstrate the reduction in training
time of 100 transactions by 80% when using 10 cores instead
of using 1 core. The results of the study have also pointed
out that increasing the number of cores does not necessarily
means reduction in the overall execution time, there are other
factors like communications between the cores, non-spark related
processing tasks, etc which can also influence the execution time.

Index Terms—anomaly detection, timeseries, scalable, spark,
scalable anomaly detection

I. INTRODUCTION

The automotive industry’s car models and derivatives have
grown significantly over the years [1]. Due to such an increase,
the complexity of the IT Landscape for managing the logistics
supply chain and production has grown vastly. The increasing
number of interfaces between the systems that run the IT
landscape has made the security of the systems a big concern.
Therefore, the industry’s security team has to frequently patch
the systems to avoid any security threat and keep them
up to date. However, to keep the overall downtime of the
logistics supply chain and production to almost zero, even
frequent security patches or updates are not affordable as they
will stop the production line and increase downtime. On the
other hand, a small problem or a failure somewhere in the
IT landscape could disrupt the production line and lead to
increased downtime and a huge loss of money. Therefore one
needs to detect quickly and solve such failures.

The unexpected instances which significantly deviate from
the normal patterns formed by the majority of a dataset are

called anomalies. For efficient resolution of an anomaly, an
intelligent system is required that can automatically detect
anomalies, identify their causes and showcase them in a
central user-interface in an intuitive way. This will not only
allow the administrators but also the service owners to easily
troubleshoot the anomaly, narrow down its root cause and
quickly resolve the problem. However, the input data being
the time series data imposes a set of challenges for the
detection of anomalies due to the lack of defined pattern
for the anomaly, noise in the input data and the complexity
of detection increases with the length of the time series.
Also, for a timestamp, the input data consists of multiple
parameter values (called features) which makes the input data
multivariate time series data and it is a challenge to identify
which parameters are relevant for which anomaly. Also, due
to the lack of labels for training, the approach for solving
such a problem has to be an unsupervised one. Therefore,
our idea to solve this challenge is to capture normal patterns
of the multivariate time series using different unsupervised
algorithms and report those observations as anomalies which
are commonly reported as anomalies by all the algorithms. It
is very highly likely that an observation reported as an anomaly
by all the algorithms is also actually an anomaly.

This work is partnered with an automotive industry, where
the environment contains data from different sources such
as supply chain, the production pipeline as well as from
the IT systems. Out of these, IT systems of the production
environment data is used in this work. There are over 100
thousand requests to these systems at any instance of time
and these requests are called transactions. Each transaction has
over 50 features or parameters such as the total response time,
CPU utilization and database query time and these parameters
values are collected every five minutes. It is time inefficient
to find the anomalies without using a distributed data pro-
cessing framework because of the size of the data, therefore
the challenge here is to build a scalable infrastructure and
framework for the anomaly detection with all the performance
requirements, and costs taken into consideration. Our approach
to solving this problem is to build the solution using the
Spark framework underneath for distributed data processing
and scalability. The third challenge as part of this work is
to provide an intuitive and easy way to view the anomalies
and provide a way for the system administrator or the service
owner to answer the question why an observation is detected



as an anomaly. Anomaly interpretation can help in efficient
troubleshooting, and thus is often required in practice [2]. Our
solution to this problem is to provide the user with the overall
summary heat map for viewing the anomalies and also provide
a list of relevant feature names from all the features which have
the highest correlation with an anomaly observation.

The contributions of this paper are summarized as follows:
• We propose an approach using multiple unsupervised

algorithms along with a Spark-based framework for build-
ing a scalable infrastructure and framework for anomaly
detection in the automotive industry.

• We also present an intuitive and easy way for interpreting
the anomalies by providing the heat map of the anomalies
along with the list of relevant feature names having the
highest correlation with the anomaly.

The rest of this paper is composed as follows. Section 2
discusses background knowledge. Section 3 studies the related
works. Section 4 describes the overall problem statement and
the followed approach to solve it. Section 5 presents the
implementation details of the developed system. Section 6
provides experimental configuration details along with results
of the conducted analysis. Section 7 summarizes the results
and lastly, Section 8 concludes the paper.

II. BACKGROUND

In this section, we present the basic background knowledge
used in this paper.
A. Storage Frameworks

1) TimescaleDB: TimescaleDB is an open-source time-
series database optimized for fast ingest and complex
queries [3]. TimescaleDB is implemented as an extension on
PostgreSQL and runs within the PostgreSQL instance. This
extension model of TimescaleDB over PostgreSQL allows
the database to take advantage of many of the attributes of
PostgreSQL and also at the same time, it leverages the high
degree of customization available to the extensions by adding
hooks deep into PostgreSQL’s query planner, data model,
and execution engine. It exposes singular tables called as
hypertables, which are a virtual view of many individual
tables holding the data, called chunks. All the hypertables are
partitioned by time interval, and can further be partitioned by a
key such as transaction ID, system id, etc. These partitions are
disjoint, which helps to minimize the set of chunks to read for
resolving a query. TimescaleDB is used as the main database
in the developed system for storing all the data.

2) Apache Parquet: It is an open-source column-
oriented data storage format of the Apache Hadoop ecosys-
tem [4]. It provides an efficient way for data compression and
encoding schemes with the enhanced performance for handling
data in bulk. Parquet stores binary data in a column-oriented
way, where the values of each column are adjacent, enabling
better compression. It is good for queries which require to
read some columns from a wide number of columns in a table
as only required columns are read and the number of I/Os
are minimized [5]. Also, aggregation queries are less time

consuming in Parquet as compared to row-oriented databases
(csv files). In our research, all the input data resides in different
csv files, thus, before any data analysis the csv files are read
and stored in a single Parquet file for efficient processing.

B. Unsupervised Anomaly Detection Algorithms

In this subsection, we briefly describe about the different
unsupervised anomaly detection algorithms used in this work.

1) Local Outlier Factor (LOF): The Local Outlier Factor
algorithm is an unsupervised anomaly detection method which
computes the local density deviation of a given data point with
respect to its neighbors. It considers outliers as the samples
that have a substantially lower density than their neighbors [6],
[7]. The local outlier factor is based on a concept of a local
density, where locality is given by ”k” nearest neighbors,
whose distance is used to estimate the density. The LOF is the
average ratio of the Local Reachability Density (It tells how
far one has to travel from the point to reach the next point or
cluster of points) of the neighbors of ”x” to the LRD of ”x”.
If the ratio is greater than 1, the density of point ”x” is smaller
than the density of its neighbors and, thus, from point ”x”, we
have to travel longer distance to get to the next point or cluster
of points, therefore ”x” is an outlier. By comparing the local
density of an object to the local densities of its neighbors, one
can identify regions of similar density, and points that have
a substantially lower density than their neighbors. These are
considered to be outliers.

2) Isolation Forest (IF): It is also an unsupervised anomaly
detection algorithm, which is based on the basis of decision
trees. It is based on the principle that, outliers are less frequent
than the regular observations and are different from them in
terms of values (means they lie further away from the normal
observations in the feature space) [8]. It create partitions
by first randomly selecting a ”feature” and then randomly
selecting a split value between the minimum and the maximum
of the selected feature. It can be represented by a tree structure.
By doing such a partitioning, anomalies/outliers should be
located closer to the root of the tree with fewer splits necessary.
As part of this algorithm, each observation is given a score
between 0 and 1 and if the score lies close to 1 then the
observation is an anomaly.

3) One-Class SVM (OCSVM): Support vector machines
(SVMs) are supervised learning models that analyze data and
recognize patterns, and can be used for both classification and
regression tasks. Typically, the SVM algorithm is given a set
of training examples labeled as belonging to one of the two
classes. An SVM model is based on dividing the training
sample points into separate categories by as wide a gap as
possible, while penalizing training samples that fall on the
wrong side of the gap. The SVM model then makes predictions
by assigning points to one side of the gap or the other [9]. In
one-class SVM, the support vector model is trained on the data
that has only one class, which is the “normal” class. It infers
the properties of normal cases and from these properties the
model can predict which observations are unlike the normal
observations [10].



4) Z-score: The Z-score, or standard score, is a way of
describing a data point in terms of its relationship to the mean
and standard deviation of a group of points. Taking a Z-score is
simply mapping the data onto a distribution whose mean (µ) is
defined as 0 and whose standard deviation (σ) is defined as 1.
The intuition behind the Z-score method is that, anything that
is too far from zero (for example 3σ or -3σ) is considered as an
outlier. Z-score being an univariate method makes it difficult
to use on the input multivariate data. Therefore in this work,
it is used on univariate scores data which are given as output
from the above-discussed algorithms for anomaly detection.

III. RELATED WORK

The outlined challenge of anomaly detection was consid-
ered by the researchers from different perspectives. Several
regression-based techniques for time-series modeling such
as robust regression [11], auto-regressive models [12], auto-
regressive moving average (ARMA) models [13], [14], and
auto-regressive integrated moving average (ARIMA) mod-
els [15], have been developed for anomaly detection. Many
deep learning models have also been proposed for detecting
anomalies within univariate and multivariate time series data
which seems to be quite effective in detection [16]–[18].
However, choosing the right method and model varies from
time series to time series due to dissimilarities between them.

The models used for learning the normalized behavior of the
data take a long time to train thus a scalable way is required.
There already exists some research in this area. For example
Lee et. al has proposed a scalable framework for anomaly
detection in software-defined networks [19] and Smith et. al
has developed a framework for detecting anomalies in the large
Cloud systems [20]. However, these systems differ from the
automotive industry’s IT Landscape data and thus cannot be
directly used. Therefore, this work focuses on developing a
framework for anomaly detection in a scalable way using the
automotive industry’s IT Landscape data.

IV. METHODOLOGY

In this section, we present the problem statement of anomaly
detection in detail and introduce the overall followed approach.

A. Problem Statement

A time series data contains successive observations which
are collected at fixed timestamps. In our study, we focus on
multiple transactions data, defined as T = {T1, T2, ..., TK},
where K is the number of transactions, and a transaction Ti
(i ≤ K) represents a multi-variate time series data defined
as x = {x1, x2, ..., xN}, where N is the length of x and an
observation xt ∈ RM is an M-dimensional vector at time t
(t ≤ N ): xt = {x1t , x2t , ..., xMt }, and x ∈ RM×N , where M
is the number of features. A time series window of length L
referred by xt−L:t ∈ RM×(L+1 is used to denote a sequence
of observations {xt−L, xt−L+1, ..., xt} from time t− L to t.

The objective of this work is to determine whether an
observation xt is an anomalous or not along with the list of
most relevant feature names F (F ≤ M ) for the anomaly

interpretation. Also, the system to do so should be scalable
with the number of transactions.
B. Approach

Fig. 1: Overall followed approach workflow

Fig. 1 shows the overall workflow of the followed approach.
The whole system consists of two sub-phases: offline training
and online detection. Data preprocessing is a module shared
by both the phases. During data preprocessing, the dataset
is transformed by resampling the number of observations to
one every defined resampling time resolution. For time series
modeling, historical values are beneficial for understanding
current data. Therefore, after preprocessing, a sequence of
observations xt−L:t instead of just xt belonging to a trans-
action Ti is used as the training data and is sent for different
algorithms ”a” belonging to LOF, IF and OCSVM, for
model training. Each algorithm gives scores as output for
each of the training observation in a transaction Ti represented
by sa = {sat−L, s

a
t−L+1, ..., s

a
t }. Further, mean and standard

deviation values represented by µa
i and σa

i , are calculated per
algorithm a and per transaction Ti on these output scores
and saved to the disk. This offline training procedure can be
conducted routinely, e.g., once per day or week.

In the Online Detection phase, for a new observation xt
belonging to a transaction Ti, the Calculate Scores module
uses the stored trained model per algorithm ”a” and determines
the score for it sai . Afterwards, Z-score Za

i per algorithm
is calculated for xt using the stored mean µa

i and standard
deviation σa

i . The calculated Z-scores for xt for all the three
algorithms, are used to determine whether it is an anomaly or
not. If all the Z-scores of xt are above a threshold (usually
3σ), xt will be regarded as anomalous, otherwise, it is normal.
If xt is detected as an anomaly, then the most relevant features
F (F ≤M ) for interpreting the anomaly are determined.

To encounter the problem of big data, the whole system
is built upon the Spark infrastructure for the distributed data
processing and scalability of the system on demand.

V. IMPLEMENTATION

In this section, we first present the overall architecture of the
developed system, followed by description of its components.

A. Overall Architecture

The developed tool is mainly written in Python and PySpark
along with HTML, CSS, and JavaScript for the web-interface.
The developed system automates the setup of a Spark cluster
and deploys the other components in that cluster. Being the
Spark-based development, the data processing and analysis can



be scaled easily depending upon the requirement and availabil-
ity of resources. The overall execution workflow between its
components in a typical use-case is shown in Fig. 2.

Fig. 2: Overall execution pipeline of anomaly detection

The procedure starts with the user providing the path where
all the CSV files belonging to the transactions are situated
through the user-interface and then, these CSV files are
combined and stored into a single parquet file. This allows
fast access of the data for further analysis due to the column-
major storage of the parquet file format. Afterward, some
preprocessing steps are conducted. These steps are conducted
both for the training as well as the new data. Subsequently,
models are trained separately for each transaction’s training
data and saved as files to the disk. Each algorithm gives a
score as an output for each training observation. Separate per
algorithm and per transaction, mean and standard deviation
values are also computed on all the training observation’s
scores and saved to the disk.

After training, each algorithm’s saved model for a transac-
tion Ti is used to determine the score on a new observation xt.
Afterward, each model’s score on this new observation along
with the model’s stored mean µa

i and standard deviation σa
i

is used to calculate the Z-score Za
i per algorithm ”a” for xt.

If all the calculated Z-scores are above a threshold, xt will
be regarded as anomalous, otherwise, it is normal. If xt is
detected as an anomaly, then the 10 most relevant features
F (F ≤ M ) are determined and stored together with the
anomaly labeled data into the database. Finally, the stored data
is queried and visualized in Grafana.

B. Preprocessing

The first step towards the detection of anomalies is to find
the right data to analyze. All the data belonging to different
transactions are in the CSV files and the initial challenge
is to efficiently group the records based on the transactions
to which they belong so that a model per transaction can
be trained. Therefore, firstly some preprocessing steps like
conversion of string timestamp to Python datetime format and
conversion of string numbers to float are done and then all

CSV files are combined and stored into a single parquet file for
column-major storage. We have found that directly processing
CSV files is much slower in comparison to processing a
single parquet file. This can be due to the column-major
storage of the files in the parquet format, allowing faster
aggregation queries and efficiently processing. Afterward, the
records belonging to a transaction are grouped efficiently using
the PySpark groupBy method. Each processed transaction data
is then further passed to the next component.

C. Models Training

Each pre-processed transaction data is read as Python pan-
das dataframe. The length of each input sequence training
dataframe (e.g., xt−L:t) is L +1 and the decision to choose it is
left to the user. First, the data is normalized using the python
sklearn’s standard scalar which removes the mean from each
observation and scales it to unit variance. Afterward, Principle
Component Analysis (PCA) is applied to this normalized
data to reduce the number of dimensions. The models of all
three algorithms are trained on the reduced data. The default
parameters used for training are mentioned in the Experimental
Configuration subsection. The trained models are saved to the
disk. These models output a score for each observation and
this score for all the training observations is used to calculate
mean score µa

i and standard deviation σa
i per algorithm model.

These values are used to decide whether a new observation is
an anomaly or not in the online anomaly detection phase.

D. Online Anomaly Detection

Now we can determine whether an observation at a time
step (t, denoted as xt) belonging to a transaction Ti is an
anomalous or not using the trained models. Each of the three
algorithm’s model is loaded and its predict function is called
on xt to get a score for it. Afterward, each algorithm model’s
score on this new observation along with the its stored mean
µa
i and standard deviation σa

i is used to calculate the Z-score
Za
i per algorithm ”a” model for xt. The calculated Z-scores

for xt are used to determine whether it is an anomaly or not.
If the Z-scores of all the models are above the threshold then
xt is marked as an anomaly otherwise, not. This threshold is
given a default value of 4σ but it can be changed from the
user interface. If the observation is marked as an anomaly then
its correlation is calculated with all the features. The top 10
highly correlated features marked as the most relevant features
along with anomaly labeled data is saved in the database.

E. Visualization

For visualizing the data, different SQL queries based panels
are integrated into the Grafana dashboard :

1) Overall anomalies heat map: This panel is responsible
for showcasing a heat map of the overall anomalies present in
the top 10 transactions. These top 10 transactions are the trans-
actions with the most number of anomalies in the configured
time period. Selecting the number of transactions (different
from 10) can also be configured. This panel displays a heat
map with x-axis representing the time, y-axis representing



Fig. 3: Anomalies heat map showcased in 5 transactions Fig. 4: Algorithm’s scores with highlighted ones above 4σ

different transactions and count of anomalies in a transaction
is represented using different colours.

2) A transaction’s anomalies heat map: This panel in the
Grafana dashboard displays a heat map of the anomalies
present in a single transaction. It is similar to the previous
one but instead of showcasing 10 transaction, the idea here is
to show only one with a detail view.

3) Anomalies view in different features: Interpreting the
anomalies or finding out the root cause of the anomalies in
a transaction is very important, as it will allow the system
administrator to troubleshoot the problem. Therefore, knowing
the feature set which has the highest correlation with the
anomalies will help administrator narrow down the root cause.
This panel showcase the anomalies in the most relevant
features set along with their values.

VI. RESULTS AND ANALYSIS

A. Experimental Configuration

All the analyses and tests are conducted using the dataset
provided by our partnered industry and is not disclosed due
to the security concerns. Different hyper-parameters set in
our experiments are as follows. The length of the input data
sequence used for training is set to first 15 days and the
testing set size is last 15 days of the January month. For all
the algorithms, the default outliers fraction is set to 0.001.
In the case of the Isolation forest, the number of estimators
is set to 100 while for other parameters default values are
used. For LOF, all the parameter’s default value is used and
for OCSVM, the kernel used is RBF with gamma value set to
0.01. The default threshold is set to 4σ. The Spark driver’s and
executor’s memory is set to 10GB and the number of cores in
the Spark cluster is set to 10 from the available 12 cores.

B. Results

Fig. 3 shows a graphic of the heat map showcasing the
anomalies present in the 5 transactions on a day in the January
month. These 5 transactions (names hashed for data security)
are the transactions with the most number of anomalies in the
configured time period. Time is represented on the x-axis, the
y-axis shows different transactions and count of anomalies in
a transaction is represented using different colors. The dark
red color corresponds to the transaction and time when there

are more anomalies, therefore one can click on it and see a
detailed view of it for further troubleshooting.

Fig. 4 shows a different algorithm’s output scores on one of
the transactions. One can see that all three algorithms result in
high scores (above 4σ) for some of the observations which are
highlighted as anomalies. Also, LOF and IF have relatively
smaller scores for the anomaly points as compared to the
OCSVM. In general, OCSVM results in higher scores for other
observations as well but are not highlighted because only those
are selected where all the algorithm’s scores are above 4σ.

Fig. 5: Training time for different number of transactions and cores.

We further have conducted the developed system’s scala-
bility test by recording the time required to train different
number of transactions with different number of cores and
results are shown in the Table I and Fig. 5. One can see
that the time required to train different number of transactions
reduced significantly when using 10 cores. For training 100
transactions the time taken with 10 cores was reduced by 80
percent as compared to when using 1 core. However, with 12
cores (all the available cores) the training time in all the tests
increased a little bit as compared to when using 10 cores. This
could be either due to the increase in communication between
the cores or because there are no remaining cores for handling
other non-spark related processing as a result the system waits
for the cores to get free and thus increases overall processing
time. Thus, in the current environment, the optimal number of
cores is 10 out of the available 12 cores.

VII. DISCUSSION

Usage of Parquet and TimescaleDB as the underneath
storage framework offers a promising technique for the storage
and efficient data queries. Processing big data require high cost



TABLE I: Training time required in seconds for different number of
transactions with different number of cores

No. of Transactions Cores=1 Cores=5 Cores=10 Cores=12
1 142 47 29.4 42.1
2 200 62 51 53.7
5 338 107 69 74

10 551 162 106 123
50 1977 579 373 424
100 4004 1142 787 804

for storage and computation therefore, storing the files in this
fashion serves efficiency and performance in both storage and
processing. Scalability test results demonstrate that increasing
the number of cores for data processing can decrease the
overall processing time as in our tests reducing the training
time of 100 transactions by 80% when using 10 cores instead
of using 1 core. However, simply increasing the number of
cores continuously does not help in the reduction of overall
processing time. There are other factors like communications
between the cores, non-spark related processing tasks, etc
which can influence the processing time. Thus, one needs to
find the optimal number of cores for their environment.

The combination of three algorithms result is used for
pointing out whether an observation is an anomaly or not. The
intuition behind this approach is that it is highly likely that
an observation reported as an anomaly by all the algorithms
is also actually an anomaly. The training performance does
suffer a little from training three models however, the detection
part which is mainly considered as the performance metric is
quite fast. The observations detected as anomalies are the ones
having Z-scores in all the algorithms above a given threshold.
This allows to detect the anomalies with the scores deviating
highly from the normal score patterns in all algorithms and
offers a novel technique for anomaly detection. Also, using
the correlation between the anomalies detected and the features
gives an intuitive way for interpreting and troubleshooting the
anomalies by providing the most relevant feature set.

VIII. CONCLUSION

Anomaly detection in the automotive industry can greatly
help the system administrators and the service owners to
discover and troubleshoot abnormal behaviors and prevent the
huge loss of money. In this paper, we present the imple-
mentation details of the tool that was used in our partnered
industry environment for building a scalable infrastructure
and framework for anomaly detection. We believe that the
method adopted using Spark underneath allows scalable and
efficient processing. Furthermore, using the PostgreSQL with
TimescaleDB for storing the data makes sure that queries for
visualization are fast. Also, the presented novel approach of
using together multiple algorithms for anomaly detection gives
high confidence in the resulting anomalies.

Prospective directions of future work include analysis of the
accuracy of the results along with the addition of deep learning
and online learning-based approaches for anomaly detection.

REFERENCES

[1] G. Trade and Invest, “The automotive industry in german¥,” [Online;
Accessed: 17-November-2019]. [Online]. Available: https://www.gtai.

de/GTAI/Content/EN/Invest/ SharedDocs/Downloads/GTAI/Industry-
overviews/industry-overview-automotive-industry-en.pdf

[2] K. Hundman, V. Constantinou, C. Laporte, I. Colwell, and
T. Soderstrom, “Detecting spacecraft anomalies using lstms and
nonparametric dynamic thresholding,” in Proceedings of the
24th ACM SIGKDD International Conference on Knowledge
Discovery &#38; Data Mining, ser. KDD ’18. New York,
NY, USA: ACM, 2018, pp. 387–395. [Online]. Available:
http://doi.acm.org/10.1145/3219819.3219845

[3] “Timescaledb overview,” [Online; Accessed: 1-October-2019]. [Online].
Available: https://docs.timescale.com/latest/introduction

[4] “Apache parquet,” [Online; Accessed: 10-October-2019]. [Online].
Available: https://parquet.apache.org/documentation/latest/

[5] R. Brundesh, “Parquet file format hadoop,” June 2016, [Online;
Accessed: 10-October-2019]. [Online]. Available: https://acadgild.com/
blog/parquet-file-format-hadoop

[6] “Outlier detection with local outlier factor (lof),” [Online; Accessed: 1-
October-2019]. [Online]. Available: https://scikit-learn.org/stable/auto
examples/neighbors/plot lof outlier detection.html

[7] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof:
Identifying density-based local outliers,” in Proceedings of the 2000
ACM SIGMOD International Conference on Management of Data,
ser. SIGMOD ’00. New York, NY, USA: ACM, 2000, pp. 93–104.
[Online]. Available: http://doi.acm.org/10.1145/342009.335388

[8] F. T. Liu, K. M. Ting, and Z. Zhou, “Isolation forest,” in 2008 Eighth
IEEE International Conference on Data Mining, Dec 2008, pp. 413–422.

[9] “One-class support vector machine,” [Online; Accessed: 1-
October-2019]. [Online]. Available: https://docs.microsoft.com/en-
us/azure/machine-learning/studio-module-reference/one-class-support-
vector-machine

[10] B. Schölkopf, R. Williamson, A. Smola, J. Shawe-Taylor, and J. Platt,
“Support vector method for novelty detection,” in Proceedings of
the 12th International Conference on Neural Information Processing
Systems, ser. NIPS’99. Cambridge, MA, USA: MIT Press, 1999,
pp. 582–588. [Online]. Available: http://dl.acm.org/citation.cfm?id=
3009657.3009740

[11] P. J. Rousseeuw and A. M. Leroy, Robust Regression and Outlier
Detection. New York, NY, USA: John Wiley & Sons, Inc., 1987.

[12] A. J. Fox, “Outliers in time series,” Journal of the Royal Statistical
Society. Series B (Methodological), vol. 34, no. 3, pp. 350–363, 1972.
[Online]. Available: http://www.jstor.org/stable/2985071

[13] B. Abraham and G. E. P. Box, “Bayesian analysis of some outlier
problems in time series,” Biometrika, vol. 66, no. 2, pp. 229–236,
1979. [Online]. Available: http://www.jstor.org/stable/2335653

[14] B. Abraham and A. Chuang, “Outlier detection and time series
modeling,” Technometrics, vol. 31, no. 2, pp. 241–248, May 1989.
[Online]. Available: http://dx.doi.org/10.2307/1268821

[15] A. M. Bianco, M. Garcı́a Ben, E. J. Martı́nez, and V. J. Yohai, “Outlier
detection in regression models with arima errors using robust estimates,”
Journal of Forecasting, vol. 20, no. 8, pp. 565–579, 2001. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/for.768

[16] D. Li, D. Chen, L. Shi, B. Jin, J. Goh, and S.-K. Ng, “Mad-gan:
Multivariate anomaly detection for time series data with generative
adversarial networks,” in ICANN, 2019.

[17] Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, and D. Pei, “Robust anomaly
detection for multivariate time series through stochastic recurrent neural
network,” in Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, ser. KDD ’19.
New York, NY, USA: ACM, 2019, pp. 2828–2837. [Online]. Available:
http://doi.acm.org/10.1145/3292500.3330672

[18] L. Zhu and N. Laptev, “Deep and confident prediction for
time series at uber,” 2017 IEEE International Conference on
Data Mining Workshops (ICDMW), Nov 2017. [Online]. Available:
http://dx.doi.org/10.1109/ICDMW.2017.19

[19] S. Lee, J. Kim, S. Shin, P. Porras, and V. Yegneswaran, “Athena:
A framework for scalable anomaly detection in software-defined net-
works,” in 2017 47th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), June 2017, pp. 249–260.

[20] D. Smith, Q. Guan, and S. Fu, “An anomaly detection framework for
autonomic management of compute cloud systems,” in 2010 IEEE 34th
Annual Computer Software and Applications Conference Workshops,
July 2010, pp. 376–381.


